Теория вероятностей. Задачи с решениями. Золотаревская Д.И.

Теория вероятностей. Задачи с решениями. Золотаревская Д.И.

802 small

altОГЛАВЛЕНИЕ
Глава 1. Определение вероятности события 5
1.1. Классическое определение вероятности 5
1.2. Относительная частота и статистическая вероятность... 22
1.3. Геометрические вероятности 24
Глава 2. Основные теоремы теории вероятностей 31
2.1. Теоремы сложения и умножения вероятностей 31
2.2. Формула полной вероятности 56
2.3. Формула Бейеса 63
Глава 3. Повторные независимые испытания 71
3.1. Формула Бернулли 71
3.2. Наивероятнейшее число появлений события в независимых испытаниях 80
3.3. Асимптотическая формула Лапласа 82
3.4. Формула Пуассона 85
3.5. Интегральная формула Лапласа 86
3.6. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях 90
Глава 4. Случайные величины и их законы распределения 93
4.1. Ряд, многоугольник и функция распределения дискретной случайной величины 93
4.2. Числовые характеристики дискретных случайных величин 109
4.3. Биномиальный закон распределения 117
4.4. Закон Пуассона 124
4.5. Функция распределения и плотность распределения вероятностей непрерывной случайной величины 130
4.6. Числовые характеристики непрерывных случайных величин 142
4.7. Закон равномерной плотности 146
4.8. Нормальный закон распределения 151
4.9. Показательный закон распределения 158
Приложение. Таблицы 163
Список литературы 166
 

scroll back to top
 
 

Авторизация



Заказать работу