СПРАВОЧНИК В КАРМАНЕ

ДЛЯ ШКОЛЬНИКОВ СТАРШИХ КЛАССОВ, АБИТУРИЕНТОВ, СТУДЕНТОВ

ФОРМУЛЫ по ХИМИИ

УДК 373.167.1:54 ББК 24я721 Н 55

> В оформлении обложки использовано фото: Africa Studio / Shutterstock.com Используется по лицензии от Shutterstock.com

Несвижский С. Н.

H 55 Формулы по химии / С. Н. Несвижский. – М.: Эксмо, 2012. – 256 с. – (Справочник в кармане).

Этот справочник станет незаменимым помощником старшим школьникам, студентам младших курсов вузов при подготовке к самостоятельным и контрольным работам, тестам, якзаменам, ЕГЭ. Быстро освежить в памяти полученные знания, систематизировать материал, вспомнить самые важные формулы и уравнения реакций — такие задачи призван решить сборник.

В справочник включены все разделы химии, изучаемые в старшей школе и вузах: общая, неорганическая и органическая химия.

УДК 373.167.1:54 ББК 24я721

Никакая часть настоящего издания ни в каких целях не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая фотокопирование и запись на магнитный носитель, если на это нет письменного разрешения излательства «Эксмо».

Ответственный редактор *В. Обручев* Ведущий редактор *Ю. Лаврова* Художественный редактор *С. Власов*

ООО «Издательство «Эксмо» 127299, Москва, ул. Клары Цеткин, д. 18/5. Тел. 411-68-86, 956-39-21. Home page: www.eksmo.ru E-mail: info@eksmo.ru

Подписано в печать 25.07.2012. Формат $70x100^{1}/_{32}$. Печать офсетная. Усл. печ. л. 10,37. Тираж экз. Заказ

ISBN 978-5-699-58453-6 9 785699 584536 > ISBN 978-5-699-58453-6

© Несвижский С. Н., 2012 © ООО «Айдиономикс», 2012

© Оформление. ООО «Издательство «Эксмо», 2012

Оглавление

РАЗДЕЛ І. ОБЩАЯ ХИМИЯ	7
Основные понятия	8
Основные законы	15
Периодический закон и периодическая система элементов Д. И. Менделеева	19
Химическая связь и строение вещества	22
РАСТВОРЫ	33
Виды коррозии металлов Строение мицеллы	
Химическая кинетика и термодинамика	43
РАЗДЕЛ II. НЕОРГАНИЧЕСКАЯ ХИМИЯ	53
Важнейшие классы неорганических соединений Оксиды Основания Кислоты Соли.	54 56
СОЛИ ГЕНЕТИЧЕСКАЯ СВЯЗЬ МЕЖДУ ВАЖНЕЙШИМИ КЛАССАМИ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ	
РАСТВОРИМОСТЬ НЕКОТОРЫХ КИСЛОТ, ОСНОВАНИЙ И СОЛЕЙ ВОЛЕ	64

Металлы главных подгрупп и их соединения	65
Щелочные металлы (IA-группа) Щелочноземельные металлы (IIA-группа)	67
Алюминий (IIIA-группа, III период)	
Металлы побочных подгрупп и их соединения	
Железо (VIIIB-группа, IV период)	
Хром (VIB-группа, IV период)	
Медь (ІВ-группа, IV период)	
Цинк (IIB-группа, IV период)	
Марганец (VIIB-группа, IV период)	
Лантаноиды (IIIB-группа, VI период) и их соединения	92
Актиноиды (IIIB-группа, VII период) и их соединения	94
Неметаллы и их соединения	95
Азот (VA-группа, II период)	95
Фосфор (VA-группа, III период)	
Сера (VIA-группа, III период)	
Углерод (IVA-группа, II период)	
Кислород (VIA-группа, II период)	
Хлор (VIIA-группа, III период)	
Водород (ІА-группа, І период)	
Благородные газы (VIII группа)	136
РАЗДЕЛ III. ОРГАНИЧЕСКАЯ ХИМИЯ	12-
газдел III. Огтаническая химия	13/
Основные понятия	138
Типы органических реакций	144
Классификация органических соединений	147

Предельные алифатические углеводороды	150
Алканы	150
Циклоалканы	153
Непредельные алифатические углеводороды	156
Алкены	156
Алкины	160
Алкадиены	164
Ароматические углеводороды	168
Функциональные производные углеводородов.	174
Галогенпроизводные углеводородов	174
Спирты	177
Фенолы	185
Альдегиды	190
Кетоны	195
Карбоновые кислоты	198
Сложные эфиры. Жиры. Мыла	206
Азотсодержащие соединения	212
Углеводы	224
Гетероциклические соединения	238
Высокомолекулярные соединения	247
Пластмассы	247
Каучуки	
Волокна	
ПРИЛОЖЕНИЕ. Элементы периодической системы	ı 253

Раздел I Общая химия

Раздел I. Общая химия

Основные понятия

Атомная частица — мельчайшая химически неделимая частица, состоящая из ядра и электронов.

Атом — мельчайшая химически неделимая нейтральная частица. Например: Mg, Na, Cl.

Атомный ион — мельчайшая химически неделимая заряженная частица. Например: ${\rm Mg^{2+}}$, ${\rm Na^+}$, ${\rm Cl^-}$.

Протонное число (Z) — величина, показывающая число протонов в ядре.

Массовое число (A) — величина, показывающая общее число протонов и нейтронов в ядре: A = Z + N, где A — массовое число, Z — протонное число, N — число нейтронов в ядре.

Дуализм электрона: электрону присущи корпускулярные (то есть электрон ведет себя, как частица) и волновые свойства.

Волновая функция (ψ) — функция, описывающая движение электрона в атоме. Квадрат волновой функции (ψ^2) пропорционален вероятности обнаружения электрона в заданной movke пространства. По произведению $\Delta V \cdot \psi^2$ можно определить вероятность нахождения электрона в заданном объеме (ΔV) пространства.

Электронное облако (орбиталь) — область околоядерного пространства, где вероятность обнаружить электрон составляет 90 %.

Квантовые числа — ряд дискретных значений, определяющих поведение электрона в атоме.

Главное квантовое число (n) — параметр, характеризующий основной запас энергии электрона и определяющий степень удаления электрона от ядра и размер орбитали: $n = 1, 2, 3, ..., \infty$.

Орбитальное квантовое число (l) — параметр, характеризующий пространственную форму орбитали: l = 0, 1, 2, 3, ..., (n - 1), где n — главное квантовое число.

Магнитное квантовое число (m_l) — параметр, определяющий ориентацию электронного облака в пространстве: $m = -l, -l + 1, -l + 2, \ldots, 0, 1, l - 1, l$, где l — орбитальное квантовое число.

Спиновое квантовое число (m_s) — параметр, характеризующий собственный момент количества движения электрона: $m_s=\pm\frac{1}{2}.$

Энергетический уровень — совокупность электронных состояний с одинаковым значением главного квантового числа n. Уровни обозначаются заглавными буквами: K (при n=1), L (при n=2), M (при n=3), N (при n=4).

Энергетический подуровень — совокупность электронных состояний с одинаковым значением главного и орбитального квантовых чисел. Например: подуровень $3s\ (n=1,\ l=0),\ 4d\ (n=4,\ l=2).$

Правило Клечковского. Электроны последовательно заполняют орбитали в порядке увеличения суммы главного и орбитального квантовых чисел (n+1). Если значения данной суммы оказываются одинаковыми, электроны размещаются на орбиталях с меньшим значением главного квантового числа n. Например, орбиталь 4s (n=4, l=0, n+l=4) будет заполняться раньше орбитали 3d (n=3, l=2, n+l=5), но электроны быстрее разместятся на орбитали 3p (n=3, l=1, n+l=4), чем на орбитали 4s (n=4, l=0, n+l=4).

Порядок заполнения энергетических подуровней: $1s,\,2s,\,2p,\,3s,\,3p,\,4s,\,3d,\,4p,\,5s,\,4d,\,5p,\,6s,\,4f,\,5d,\,6p,\,7s,\,5f,\,6d,\,7p$ и т. д.

Принцип Паули: для каждого атома не существует двух электронов с одинаковым набором всех четырех квантовых чисел.

Следствия из принципа Паули:

на одной орбитали могут находиться максимум два электрона,
отличающиеся спиновыми квантовыми числами;

 \square максимальное количество электронов, способных разместиться на энергетическом уровне, составляет $2n^2$, где n — номер энергетического уровня. Например, на четвертом энергетическом

уровне N (при n=4) максимально может находиться $2n^2=2\cdot 42=32$ электрона.

Правило Хунда. Электроны одного подуровня сначала заполняют все свободные орбитали, и только после этого на орбиталь добавляется по второму электрону.

Электронная конфигурация атома — формула, показывающая, какое число электронов содержится на каждом подуровне. Например, электронная конфигурация атомов кислорода, серы и хрома: $1s^22s^22p^4$, $1s^22s^22p^63s^23p^4$, $1s^22s^22p^63s^23p^63d^54s^1$ соответственно.

Химический элемент 3 — вид атомных частиц, ядра которых имеют одинаковый заряд.

Нуклид — разновидность атомных частиц с одинаковыми значениями протонных и массовых чисел. Протонное число нуклида пишется слева внизу от химического элемента, массовое число нуклида — слева вверху $\binom{A}{2}$: 1_1 H, $^{238}_{92}$ U.

Изотопы — разновидность атомных частиц с одинаковыми значениями протонных чисел, но разными значениями массовых чисел. Например, химический элемент углерод С имеет два изотопа: ${}^{12}_{6}$ С и ${}^{6}_{6}$ С.

Радиоактивность — самопроизвольный распад неустойчивых атомных ядер на более стабильные ядра и различные частицы (α -частицы, β -частицы (электроны и позитроны), нейтрино и др.). α -распад происходит с образованием α -частиц, которые являются ядрами атома гелия 4_2 He: $^{235}_9$ U $\rightarrow ^4_2$ He + $^{231}_9$ Th.

При электронном β -распаде нейтрон преобразуется в протон с выбросом электрона и антинейтрино: $^{17}_{7}N + ^{17}_{8}O + \beta^{-} + \tilde{\nu}$.

При позитронном β -распаде протон преобразуется в нейтрон с выбросом позитрона и нейтрино: ${}^{1}_{6}C + {}^{1}_{5}B + \beta^{+} + \nu$.

При электронном захвате происходит захват электрона e^- протоном ${}^1_1 p$ ядра с образованием нейтрона ${}^0_0 n$ и нейтрино v: ${}^{54}_{24}{\rm Cr} + e^- \to {}^{50}_{23}{\rm V} + {}^0_1 n + {\rm v}.$

Атомная единица массы u (юнит) — величина, численно равная $\frac{1}{12}$ части массы нуклида $^{126}\mathrm{C}\colon 1u=\frac{m(^{12}_6\mathrm{C})}{12}=\frac{1,993\cdot 10^{-26}\,\mathrm{K}\Gamma}{12}==1,661\cdot 10^{-27}\,\mathrm{k}\Gamma.$

Относительная атомная масса нуклида $A_r({}_Z^A\Theta)$ — величина, численно равная отношению масс одной атомной частицы нуклида и 1u: $A_r({}_{20}^{40}{\rm Ca}) = \frac{m({}_{6}^{12}{\rm Ca})}{1u} = \frac{6,638 \cdot 10^{-26} \, {\rm Kr}}{1,661 \cdot 10^{-27} \, {\rm Kr}} = 39,963 \approx 40.$

Относительная атомная масса элемента $A_r(3)$ — величина, численно равная отношению среднего значения масс всех нуклидов

элемента к 1
$$u$$
: $A_r(\text{Ca}) = \frac{\overline{m}(\text{Ca})}{1u} = \frac{6,657 \cdot 10^{-26} \,\text{kr}}{1,661 \cdot 10^{-27} \,\text{kr}} = 40,078 \approx 40.$

Молекула — мельчайшая частица вещества, характеризующая его химический состав и все химические свойства. В состав молекулы вещества может входить один вид атомов (ртуть Hg, аргон Ar), либо несколько видов атомов (серная кислота H_2SO_4 , бутан C_4H_{10}).

Относительная молекулярная масса (M_r) — величина, численно равная отношению значения массы молекулы вещества к 1u:

$$M_r(\text{H}_2\text{O}) = \frac{2,993 \cdot 10^{-26} \text{ kg}}{1,661 \cdot 10^{-27} \text{ kg}} = 18,015.$$

Кроме того, зная химический состав молекулы вещества и относительные атомные массы элементов, можно также вычислить относительную молекулярную массу: $M_r(H_2O) = 2A_r(H) + A_r(O) = 2 \cdot 1,008 + 15,999 = 18,015$.

Вещество — совокупность частиц (атомов, молекул либо ионов), обладающих определенными физическими и химическими свойствами.

Простое вещество — вещество, состоящее из атомов одного элемента: хлор Cl_{\circ} , уголь C.

Аллотропия — явление, при котором атомы одного элемента могут существовать в виде нескольких простых веществ.

Аллотропные модификации — простые вещества, образованные атомами одного элемента, но отличающиеся друг от друга составом молекул (например кислород O_2 и озон O_3) либо строением кристаллов (например, графит и алмаз —аллотропные модификации углерода C).

Сложное вещество — вещество, состоящее из атомов разных элементов: этиламин $C_0H_5NH_0$, хлорид натрия NaCl.

Кристаллическая решетка вещества — объемный условный каркас, в узлах которого находятся частицы вещества (молекулы, атомы, ионы). Разделяют вещества молекулярного и немолекулярного строения.

Вещества молекулярного строения — вещества, в узлах условного кристалла которых находятся молекулы: фенол C_6H_5OH , сахароза $C_{19}H_{29}O_{11}$.

Вещества немолекулярного строения — вещества, в узлах условного кристалла которых находятся *атомы* (атомная кристаллическая решетка, например углерод C, фосфор P_4) или ионы (ионная и металлическая кристаллические решетки, например хлорид натрия NaCl, нитрат аммония NH_4NO_3 , медь Cu, натрий Na).

Химическая формула — графическое изображение качественного и количественного состава вещества (cmexuomempuveckas формула, например глюкоза $C_6H_{12}O_6$) и (или) последовательности соединения атомов в молекулах вещества (cmpykmyphas форморическая формурная формурна формурна формурна формурна формурна формурна формурна формурна формурна формурна

мощью химических элементов, цифр, скобок, штрихов и точек.

Формульная единица (ФЕ) вещества молекулярного и атомного строения — реальные частицы вещества, то есть молекулы и атомы соответственно, определяющие его химическую формулу. Например: ФЕ углекислого газа — молекула CO_2 , ФЕ углерода — его атом C.

Формульная единица вещества ионного строения — условная частица вещества, состоящая из группы атомов или ионов, определяющих его химическую формулу. Например: Φ E нитрата натрия $NaNO_3$ — условная частица, состоящая из катиона натрия Na^+ и аниона NO_3^- , то есть из группы атомов $NaNO_3$.

Химическое количество вещества (n) — значение, пропорциональное числу ΦE : $n(X) = \frac{N(\Phi E)}{N_A}$, где $N(\Phi E)$ — число ΦE ,

 $N_{\scriptscriptstyle A}$ — постоянная Авогадро, X — химическая формула вещества. Единица количества вещества — *моль*. 1 моль любого вещества содержит $6.02\cdot 10^{23}\, \Phi {
m E}$.

Постоянная Авогадро (N_{A}) — величина, отнесенная к количеству вещества, численно равному 1 моль: $N_{A} = \frac{6.02 \cdot 10^{23} \Phi \rm E}{1$ моль

 $=6.02 \cdot 10^{23} \text{ моль}^{-1}$.

Молярная масса вещества (M) — величина, равная отношению массы вещества к его химическому количеству: $M(X) = \frac{m(X)}{n(X)}$,

где m(X) — масса вещества, n(X) — химическое количество вещества.

Единица молярной массы — г/моль.

Для веществ молекулярного строения числовые значения молярной массы и относительной молекулярной массы совпадают: $M(X) = M_r(X)$. Например: $M(H_2O) = M_r(H_2O) = 18,015 \text{ г/моль} \approx 18 \text{ г/моль}$.

Молярный объем вещества (V_m) — величина, равная отношению объема некоторой части вещества к его химическому количеству:

 $V_m(X) = \frac{V(X)}{n(X)}$. Единица молярного объема — $m^3/моль$: молярный объем железа $V_m({
m Fe}) = 7,09~{
m cm}^3/{
m моль}$.

Химический эквивалент вещества, или фактор эквивалентности, $\frac{1}{z^*}(X)$ — часть ФЕ вещества, соответствующая одному катиону

водорода H^+ (в кислотно-основной реакции) либо одному электрону e^- (в окислительно-восстановительной реакции); z^* — число эквивалентности, равное числу катионов водорода H^+ (в кислотно-основной реакции) либо числу электронов e^- (в окислительно-восстановительной реакции) и соответствующее одной ФЕ вещества. Так, для кислотно-основной реакции $\mathrm{H}_2\mathrm{SO}_4$ 42NaOH \rightarrow Na $_2\mathrm{SO}_4$ +2H $_2\mathrm{O}_4$ оквивалентом серной кислоты $\mathrm{H}_2\mathrm{SO}_4$ будет половина ее молекулы — $[1/2(\mathrm{H}_2\mathrm{SO}_4)]$. Для окислительно-восстановительной реакции $\mathrm{SH}_2\mathrm{SO}_4$ \rightarrow 4I $_2$ + $\mathrm{H}_2\mathrm{S}_2$ оквивалентом серной кислоты $\mathrm{H}_2\mathrm{SO}_4$ будет одна восьмая молекулы — $[1/8(\mathrm{H}_2\mathrm{SO}_4)]$.

Основные законы

Закон сохранения массы вещества. Масса прореагировавших веществ равна массе образовавшихся веществ с учетом изменения массы, соответствующей выделившейся либо поглощенной в результате реакции энергии.

Математически данный закон для реакции $aA+bB\to cC+dD\pm Q$ (далее по тексту — реакция (1)) выражается формулой $[m(A)+m(B)]=[m(C)+m(D)]\pm \Delta m$, где m(A),m(B),m(C),m(D) — массы веществ A,B,C,D соответственно; Δm — изменение массы, которое вычисляется из уравнения Эйнштейна $\Delta m=\frac{\Delta E}{2}$,

где ΔE — изменение энергии (тепловой эффект реакции (1), c — скорость света в вакууме (3 · 10^8 м/c)). Как правило, значение Δm чрезвычайно мало (10^{-9} – 10^{-11} г), поэтому им можно пренебречь.

Закон постоянства состава веществ. Независимо от методов получения любого вещества молекулярного строения его количественный и качественный состав остается неизменным.

Состав воды всегда выражается одной формулой — $\rm H_2O$, в которой массовые доли (w) водорода H и кислорода O равны 11,19~% и 88.81~% соответственно.

На вещества *немолекулярного строения* данный закон не распространяется, так как количественный состав таких веществ зависит от их способа получения: состав оксида меди(II) CuO может варьироваться от $Cu_{0.730}O$ до $Cu_{1.053}O$.

Закон эквивалентов. Химические количества эквивалентов всех веществ, которые участвуют в реакции и образовались в ее результате, численно равны между собой.

Математически для реакции (1) данный закон имеет вид $n[\frac{1}{z^*}(A)] =$

$$=n[\frac{1}{z^*}(B)]=n[\frac{1}{z^*}(C)]=n[\frac{1}{z^*}(D)], n[\frac{1}{z^*}(A)]=\frac{m(A)}{M[\frac{1}{z^*}(A)]},$$
где $m(A)$ —

масса вещества A, $M[\frac{1}{z^*}(A)]$ — молярная масса эквивалента вещества A.

Закон объемных отношений Гей-Люссака. Соотношение объемов газов, которые участвуют в реакции и образовались в ее результате, равно небольшому целому числу.

Закон Авогадро. При одинаковых внешних условиях равные объемы любых находящихся в газообразном состоянии веществ содержат одинаковое число молекул.

Следствия из закона Авогадро.

 \square Любое газообразное вещество количеством 1 моль, содержащее $6.02\cdot 10^{23}$ молекул и находящееся в нормальных условиях (н. у.), то есть при 0 °C и 101,325 кПа, занимает объем 22,4 л. Этот объем называется молярным объемом газа и обозначается V_m^0 .

Молярный объем смеси газов соответствует средней молекулярной массе смеси газов и вычисляется по формуле

$$\overline{M}$$
(смеси n – газов) = $\frac{m(\text{смеси})}{n(1)+n(2)+\ldots+n(n)}$, где $n(1),n(2),n(n)$ —

количество 1-го, 2-го и n-го газа.

□ Плотностью газа р (г/дм³ или кг/м³) при н. у. — величина, численно равная отношению молярной массы газа к его молярному объему. Так, 1 дм³ углекислого газа СО₂ весит 1,96 г:

$$\rho({\rm CO_2}) = \frac{M({\rm CO_2})}{V_m^0} = \frac{44 \; \textrm{г/моль}}{22,4 \; \textrm{дm}^3 \, / \textrm{моль}} = 1,96 \; \textrm{г/дm}^3.$$

 \square Относительная плотность одного газа к другому газу представляет собой величину, численно равную отношению молярных масс этих газов: $D_{N/M} = \frac{M(N)}{M(M)}$, где M(N) — молярная

масса газа N, M(M) — молярная масса газа M.

Часто используемые в решении задач значения относительных плотностей неизвестного газа N по водороду и воздуху

можно выразить следующим образом: $D_{N/{
m H}_2} = \frac{M(N)}{2 \ {
m \Gamma/Mojh}},$

$$D_{N/ ext{возд.}} = rac{M(N)}{29 \ \Gamma/ ext{моль}}.$$

 $\hfill \Box$ Если в реакции $aA+bB \to cC+dD\pm Q$ происходит взаимодействие между газами A и B, то стехиометрические коэффициенты a и b в уравнении будут пропорциональны объемам

реагирующих газов:
$$\frac{V(A)}{V(B)} = \frac{a}{b}$$
.

Закон Дальтона, или закон парциальных давлений газов. Общее давление смеси не участвующих в химическом взаимодействии газов равно сумме парциальных давлений каждого газа: $p_{\text{смесн}} = p_1 + p_2 + \ldots + p_n$, где $p_{\text{смесн}}$ — общее давление смеси газов; p_1, p_2, p_n — парциальное давление 1-го, 2-го, n-го газа.

Парциальное давление газа — такое давление, которое оказывал бы данный газ на стенки емкости, занимай он весь объем газовой смеси при тех же условиях. Математически парциальное давление можно выразить через объемную (φ) или молярную (χ) долю газа в смеси (первый закон Рауля): $p_1 = \varphi_1 \cdot p_{\text{смеси}}, p_1 = \chi_1 \cdot p_{\text{смеси}}.$

Закон Бойля — Мариотта. При одной и той же температуре произведение значений давления газа и занимаемого при данном давлении объема газа составляет постоянную величину.

Закон имеет следующее математическое выражение: $p_1 \cdot V_1 = p_2 \cdot V_2 = \dots = p_n \cdot V_n = \text{const}$, где V_1 , V_2 , V_n — занимаемые объемы газа при давлении p_1 , p_2 , p_n соответственно.

Закон Шарля — Гей-Люссака. При одном и том же давлении отношение значений занимаемого объема газа к его абсолютной температуре составляет постоянную величину.

Математическое выражение данного закона имеет вид: $\frac{V_1}{T_1} = \frac{V_2}{T_2} = \ldots = \frac{V_n}{T_n}, \ \text{где} \ V_1, \ V_2, \ V_n \ —} \ \text{занимаемые объемы газа при}$

абсолютных температурах T_1 , T_2 , T_n соответственно. Причем абсолютная температура T, выражаемая в Кельвинах (K), связана с температурой t, выражаемой в градусах Цельсия (°C): T=t+273.

Объединенный газовый закон. Произведение значений давления газа и занимаемого при данном давлении объема газа, отнесенное к значению абсолютной температуры газа, составляет постоянную величину.

Математическое выражение данного закона имеет вид: $\frac{p_1\cdot V_1}{T_1} = \frac{p_2\cdot V_2}{T_2} = \ldots = \frac{p_n\cdot V_n}{T_n} \ (ypashehue\ Knaneŭpoha),\ rge\ V_1,\ V_2,$

 V_n — занимаемые объемы газа при абсолютных температурах $T_1,\,T_2,\,T_n$ и давлении $p_1,\,p_2,\,p_n$ соответственно.

 $\it Частный случай:$ для 1 моль любого газа при н. у. отношение $rac{p_0\cdot V_0}{T_0}$

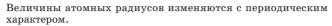
принимает постоянное значение, равное $8,314~\rm Дж\cdot моль^{-1}\cdot K^{-1},$ и называется *универсальной газовой постоянной R*. Если количество газа составляется n моль, то, учитывая законы Бойля — Мариотта и Шарля — Гей-Люссака, можно получить *уравнение* Клапейрона — Менделеева: $p\cdot V=\frac{m}{M}\cdot R\cdot T$, где p,V,m,M,T —

давление газа, его объем, масса, молярная масса и абсолютная температура соответственно, R — универсальная газовая постоянная.

Периодический закон и периодическая система элементов Д. И. Менделеева

Периодический закон. Свойства атомов химических элементов, состав и свойства образуемых ими веществ находятся в периодической зависимости от зарядов атомных ядер.

Таблица периодической системы элементов — графическое выражение периодического закона, состоящая из периодов и групп.


Период — последовательный горизонтальный ряд химических элементов, в атомах которых число энергетических уровней одинаково. Так, для атомов третьего периода Na, Mg, Al, Si, P, S, Cl, Ar электронная оболочка представляет собой 3 последовательных энергетических уровня. Электронная конфигурация внешнего энергетического уровня по периоду изменяется от ns^1 (щелочные металлы, например, Na[Ne]3 s^1) до ns^2np^6 (благородные газы, например Ar[Ne]3 s^23p^6), где n — номер периода, а [Ne] = $1s^22s^22p^6$ — электронная конфигурация неона Ne.

Группа — вертикальный ряд химических элементов, в атомах которых внешний энергетических уровень имеет схожую электронную конфигурацию. Так, для щелочных металлов внешний энергетический уровень — ns^1 .

Валентные электроны — эквивалентное номеру группы число электронов, находящихся на внешнем энергетическом уровне и, как правило, участвующих в образовании химических связей. Так, для элемента V группы третьего периода фосфора P с электронной конфигурацией [Ne] $3s^23p^3$ число валентных электронов равно 5.

Орбитальный радиус атома — теоретически рассчитанное расстояние от ядра до той точки в пространстве, где вероятность обнаружить электроны атома максимальна.

Эффективный радиус атома — радиус, при котором атом проявляет свои основные свойства. Определяется на основании электронографии и рентгенографии в молекулах, ионных и металлических кристаллах.

- □ По мере увеличения заряда атомного номера s периодах радиус атомов s- и p-элементов уменьшается значительнее, чем радиус атомов d-элементов. Так, в s- и p-элементах третьего периода радиус атома уменьшается почти в два раза: с 190 пм у атома натрия Na ([Ne]3s¹) до 99 пм у атома хлора Cl ([Ne]3s²3p⁵), в то время как для d-элементов четвертого периода уменьшение радиуса атома не столь существенное: со 164 пм у скандия Sc ([Ar]3d¹4s²) до 153 пм у цинка Zn ([Ar]3d¹⁰4s²).
- □ По мере увеличения заряда атомного номера в группах радиус атомов s- и p-элементов увеличивается в большей степени, чем радиус атомов d-элементов. Так, для d-элементов пятого и шестого периода VI группы молибдена Мо ([Kr] $4d^65s^1$) и вольфрама W ([Xe] $4f^{14}5d^46s^2$) радиусы атомов имеют близкие значения 139 пм и 141 пм соответственно.

Энергия ионизации — минимальное количество энергии, необходимое для отрыва электрона от атома элемента Э. Единица энергии ионизации — эВ.

Общая схема процесса отрыва электрона от атома: $3+E_{\tiny{\text{нон}}}=3^++e^-$. Например: для атома хлора величина энергии ионизации $E_{\tiny{\text{нон}}}(\text{Cl})=13,0$ эВ.

Энергия сродства к электрону — положительный либо отрицательный энергетический эффект процесса присоединения электрона к атому элемента Э.

Общая схема процесса: $\partial+e^-=\partial^-\pm E_{\rm cp}$. Так, для атома хлора величина энергии сродства к электрону положительна: $E_{\rm cp}({\rm Cl})=3,61$ эВ, для атома натрия — отрицательна: $E_{\rm cn}({\rm Na})=-0,22$ эВ.

Электроотрицательность (ЭО) — условный параметр атома, определяющий его способность стягивать на себе электронную плотность в химическом соединении. Существует несколько различающихся между собой шкал электроотрицательностей элементов (по Полингу, по Оллреду — Рохову, по Малликену и т. д.).

Наиболее электроотрицательный элемент — фтор F (по Полин $ry - 3,98$, по Оллреду — Рохову — $4,10$), наименее электро отрицательный — франций Fr (по Полин $ry - 0,7$, по Оллреду — Рохову — $0,86$).	-
Закономерности изменения ЭО атомов:	
\square в периоде 90 атомов увеличивается (так, для элементов III периода 90 постепенно растет (по Полингу) от $0,93$ для атома натрия 80 для 80 для атома хлора 80 с);	
□ <i>в группе</i> ЭО атомов, как правило, уменьшается (так, для <i>s</i> -элементов I группы ЭО постепенно падает (по Полингу от 2,02 для атома водорода H до 0,7 для атома франция Fr))

Химическая связь и строение вещества

Химическая связь — электростатическое взаимодействие изолированных атомов, приводящее к образованию устойчивой многоатомной системы (молекулы, кристалла) и сопровождающееся выделением энергии.

Основное условие образования сложной молекулы AB из атомов A и B: $E_{AB} < E_A + E_B$, где E_{AB} — энергия молекулы AB, E_A — энергия атома A. E_B — энергия атома B.

Основные типы химической связи: ковалентная, ионная, металлическая.

Основные параметры химической связи: длина связи и ее прочность.

Энергия связи — мера прочности связи, та энергия, которую необходимо затратить, чтобы разорвать химическую связь.

Единица энергии связи — кДж/моль.

Например: молекула фтора F_2 — более реакционно способное вещество, чем молекула водорода H_2 , так как энергия связи H — H превышает энергию связи F — F: $E_{\rm cs.}(F$ — F) = $159~{\rm kДж/моль}$, $E_{\rm cs.}(H$ — H) = $435~{\rm kДж/моль}$.

Длина связи — характеристика связи, показывающая расстояние между ядрами химически связанных атомов.

Единица длины связи — нм (10^{-9} м).

Закономерности изменения свойств веществ в зависимости от длины связи:

увеличение длины связи приводит к уменьшению прочности
связи, а значит, и к увеличению реакционной способности
вещества: длина связи Н—Н равна 0,074 нм, в том время
как длина связи F — F равна 0,142 нм.

увеличение кратности связи приводит к укреплению связи
между атомами: длина одинарной связи С—С равна 0,154 нм,
а длина двойной связи С=С составляет 0,132 нм.

Ковалентная связь — химическая связь между атомами (разность величин их 90 не превышает 1,5), образованная за счет общих электронных пар.

Обменный механизм образования ковалентной связи — взаимодействие двух одноэлектронных орбиталей (по одному электрону от каждого изолированного атома) внешнего энергетического уровня с образованием новой молекулярной орбитали и с понижением потенциальной энергии всей системы.

Общая схема процесса — $A \cdot + B \cdot = A \cdot B$: $H \cdot + Cl \cdot = H \cdot Cl$ — взаимодействие валентных электронов атомов водорода и хлора идет с образованием сложного вещества — хлороводорода.

Донорно-акцепторный механизм образования ковалентной связи — взаимодействие двух атомов, один из которых имеет двухэлектронную орбиталь (два электрона с противоположно направленными спинами) и называется донором, а другой имеет свободную от электронов орбиталь и называется акцептором.

Общая схема процесса — $A:+ \square B = A:B: H^+\square + NH_3 = NH_4^+$ — взаимодействие двухэлектроного облака азота, входящего в состав аммиака, со свободной орбиталью иона водорода идет с образованием иона аммония NH_4^+ .

Валентность атома — число ковалентных связей, образованных атомом. Так, углерод С в молекуле метана $\mathrm{CH_4}$ соединен с четырьмя атомами водорода, поэтому его валентность равна 4.

\sigma-связь — связь, образованная при перекрывании электронных орбиталей *по линии*, соединяющей атомы: σ -связь С — С в молекуле этана H_3 С — CH_3 .

 π -связь — связь, образованная при перекрывании электронных орбиталей в двух областях пространства *по обе стороны от линии*, соединяющей атомы. Так, в молекуле этена H_2C — CH_2 двойная связь между атомами углерода представлена σ -и π -связями.

Кратность связи — число электронных пар, участвующих в образовании ковалентной связи. Так, в молекуле ацетилена

 ${
m HC}$ \equiv ${
m CH}$ кратность связи между двумя атомами углерода ${
m C}$ равна ${
m 3.}$

Основные свойства ковалентной связи.

$Hacыщаемость.$ Электронная пара, ответственная за образование химической связи между атомами, не может вступать в какие-либо взаимодействия с другими электронами и парами электронов, что исключает образование других связей. Как следствие, ковалентные соединения имеют строго определенный количественный состав: бензол C_6H_6 , глюкоза $C_6H_{12}O_6$.
Hanpaвленность. При образовании ковалентной связи происходит максимальное перекрывание электронных орбиталей соединяющихся атомов.
Полярность связи. Данное свойство обусловлено различием в электроотрицательности (90) атомов, участвующих в образовании связи, и смещением электронной плотности в сторону атома, обладающего бо́льшим значением 90 .
Ковалентная связь бывает $неполярной$ (атомы, участвующие в образовании связи, обладают одинаковой Θ 0, например кислород O_2 , бром Br_2) и $nonsphoù$ (атомы, участвующие в образовании связи, обладают разной Θ 0: фтороводород HF, оксид серы(IV) SO_2).
Количественная характеристика полярности связи — электрический момент диполя μ : μ = δ + ι , где δ — абсолютный эффективный заряд, ι — длина диполя.
Π оляризуемость — способность изменять полярность связи и (или) всей молекулы под действием приложенного электрического поля или другой полярной молекулы (иона).
Степень окисления — условная целочисленная или дробная величина атома в химическом соединении, принимающая значения от -4 до $+8$ и определяющая смещение валентных электронов от атома (положительная степень окисления, например в молекуле углекислого газа CO_2 степень окисления атома углерода C равна $+4$) или к атому (отрицательная

степень окисления, например в молекуле воды H_2O степень окисления кислорода O составляет -2).

Для определения степени окисления атома необходимо руководствоваться следующими правилами:

- сумма степеней окисления атомов, входящих в состав нейтральной молекулы или радикала, равна 0;
- сумма степеней окисления атомов, входящих в состав иона, равна заряду иона;
- степень окисления атомов, входящих в состав простых веществ, равна 0:
- минимальные значения степеней окисления атомов металлов равны 0.

Минимальные значения степеней окисления атомов неметаллов (исключение — водород) равны $N_{\rm e}$ группы — 8. Так, для атома хлора Cl VII группы минимальная степень окисления равна -1.

Максимальные значения степеней окисления атомов соответствуют номерам групп (кроме атомов некоторых благородных газов: гелия Не, неона Ne, аргона Ar, криптона Kr; неметаллов: кислорода О, фтора F; металлов: серебра Ag, меди Сu, никеля Ni, кобальта Со, золота Au). Так, для атома натрия Na I группы максимальная степень окисления равна +1, в том время как в некоторых соединениях атом I группы побочной подгруппы золото Au формально проявляет степень окисления +2 (на самом деле одна часть атомов золота имеет степень окисления +1, а другая — +3).

 \square «Степень окисления» \neq «валентность». В большинстве случаев численные значения степени окисления и валентности совпадают: так, в молекуле НВг степень окисления брома равна -1, а валентность -1, однако в молекуле водорода H_2 степень окисления каждого атома водорода равна 0, а валентность -1.

Окислительно-восстановительные реакции — реакции, в ходе которых наблюдается изменение степеней окисления атомов,

входящих с состав реагирующих веществ. Так, при сгорании угля C степень окисления входящего в его состав углерода C меняется с C до C

Реакция окисления — процесс отдачи электронов, в результате которого степень окисления атома увеличивается: 2^{0} Mg $+^{0}$ $+^{2}$ $-^{2}$ (процесс горения (окисления) магниевой стружки).

Реакция восстановления — процесс присоединения электронов, в результате которого степень окисления атома уменьшается. Так, при промышленном способе получения аммиака NH_3 наблюдается восстановление азота: $N_2 + 3\,H_2 \rightarrow 2\,N\,H_3$.

Окислители — атомы (вещества), присоединяющие электроны в ходе окислительно-восстановительной реакции.

Примеры важнейших окислителей:

Ш	простые вещества (неметаллы с высоким значением электро-
	отрицательности): фтор \mathbf{F}_2 , кислород \mathbf{O}_2 ;
	сложные вещества, содержащие в своем составе атомы, на-
	ходящиеся в своей высшей степени окисления: перманганат
	калия KMnO ₄ , азотная кислота HNO ₃ , концентрированная

Восстановители — атомы (вещества), отдающие электроны в ходе окислительно-восстановительной реакции.

серная кислота H₂SO₄, хлорная кислота HClO₄.

Примеры важнейших восстановителей:

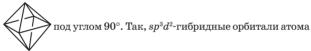
- \square простые вещества (металлы): щелочные и щелочноземельные металлы (натрий Na, калий K, магний Mg, кальций Ca, стронций Sr), алюминий Al, цинк Zn;
- □ сложные вещества, содержащие в своем составе атомы, находящиеся в низшей степени окисления: силан SiH₄, аммиак NH₃, сероводород H₂S, гидрид кальция CaH₂.

Типы окислительно-восстановительных реакций (ОВР):

межмолекулярные:	$2 \overset{\scriptscriptstyle{+3}}{\mathrm{Fe}} \mathrm{Cl}_3 + 3$			KCl(окислител	Ь
и восстановитель —	разные во	тупаюц	цие в реак	цию вещества)	;

	<i>внутримолекулярные:</i> ${}^{-3}_{N}$ H_{4} ${}^{+3}_{N}$ O_{2} → ${}^{N}_{2}$ +2 H_{2} O(в составе одного вещества содержится и элемент-окислитель и элемент-восстановитель);
	реакции диспропорционирования: $2\overset{\circ}{\mathrm{Cl}}_2 + 2\mathrm{Ca}(\mathrm{OH})_2 \to \mathrm{Ca}\overset{-1}{\mathrm{Cl}}_2 +$
	$+$ Ca(ClO) $_2$ $+$ 2H $_2$ O (один и тот же элемент (в данном случае хлор Cl), находясь в промежуточной степени окисления, одновременно окисляется и восстанавливается).
	ереохимия — раздел химии, в рамках которого рассматривается остранственное строение (геометрия) молекул.
СТІ	о <mark>метрическая конфигурация молекул</mark> определяется простран- зенной направленностью σ-связей, соответствующих максималь- му перекрыванию взаимодействующих электронных орбиталей.
	бридизация орбиталей— процесс усреднения атомных орби- лей по форме и размерам.
уч ги	бридные орбитали — скомбинированные атомные орбитали, аствующие в процессе образования ковалентных связей. Число бридных орбиталей атома идентично числу его первоначальных омных орбиталей.
Ти	пы гибридизации.
	sp -гибридизация — процесс образования из одной s - и одной p -атомных орбиталей двух гибридных орбиталей, расположенных симметрично в линию, под углом 180° . Так, благодаря sp -гибридным орбиталям атома бериллия Ве молекула Cl — Be — Cl имеет линейную форму.
	sp^2 -гибридизация — процесс образования из одной s - и двух p -атомных орбиталей трех гибридных орбиталей, симметрично ориентированных в одной плоскости, под углом 120° . Так, благодаря sp^2 -гибридным орбиталям атома бора B молекула F — F — лежит в одной плоскости, а атомы фтора F — вер-
	I F

шины правильного треугольника.


 $\square \ sp^3$ -гибридизация — процесс образования из одной s- и трех p-атомных орбиталей четырех гибридных орбиталей, симме-

трично ориентированных к вершинам тетраэдра

под углом 109°28'. Так, sp^3 -гибридные орбитали атома угле- Н

 \square sp^3d^2 -гибридизация — процесс комбинации шести атомных орбиталей (одной s-, трех p- и двух d-орбиталей), ведущий к образованию шести sp^3d^2 -гибридных орбиталей, симметрично ориентированных в пространстве к вершинам октаэдра

серы S в молекуле гексафторида серы F F F .

Соединения с делокализованными **π**-связями — соединения, в которых электронная пара в равной степени распределена между несколькими атомами. Так, в молекуле бензола

между шестью атомами углерода С.

Молекулярная орбиталь — орбиталь, охватывающая всю молекулу, в пределах которой на движение электрона оказывают влияние все атомы, входящие в состав молекулы, и их электроны.

Ионная химическая связь — предельный случай ковалентной полярной связи, образующейся между атомами с сильно различающимися значениями ∂O (разность $\partial O \geqslant 1,9$), между *катионом* (отдает электрон) и *анионом* (принимает электрон).

Соединения с ионной связью: соли (MgSO₄), основания (KOH), оксилы (BaO).

Так, в молекуле хлорида натрия NaCl между атомами натрия Na $(\Theta O = 0,93)$ и хлора Cl $(\Theta O = 3,16)$ образуется ионная связь. Атом Na приобретает положительный заряд и становится ионом натрия Na $^+$, а атом Cl, принимая электрон, становится отрицательно заряженной частицей — анионом хлора Cl $^-$.

Основные свойства ионной связи:

Ш	ненаправленность;
П	ненасышаемость.

Стехиометрический состав ионных соединений показывает лишь приблизительное соотношение между числом атомов элементов, входящих в состав соединений.

Металлическая связь — химическая связь, основанная на распределении валентных электронов между всеми атомами соединения (а не только на их обобществлении двумя соседними атомами, как в случае ковалентной связи) и позволяющей удерживать все атомы металлов в едином кристалле. Простые вещества с металлической связью — металлы Na, Ca, Cu, Zn, сложные вещества с металлической связью — интерметаллические соединения Ca₂Cu, Cu₅Zn₈.

Основные свойства металлической связи:

	ненаправленность;
\Box	папока пизованность

Межмолекулярные силы (силы Ван-дер-Ваальса) — слабые электростатические силы взаимодействия, проявляющие

между электронейтральными молекулами на значительно больших расстояниях, чем в случае формирования химической связи между атомами, и обуславливающие образование, вначале, молекулярной жидкости, а затем и молекулярных кристаллов.

Типы межмолекулярного взаимодействия.

 □ Ориентационное взаимодействие — взаимодействие полярных молекул, приводящее к их пространственному ориентированию относительно друг друга противоположно заряженными концами диполей. Данный тип межмолекулярных взаимодействий проявляется в любых полярных жидкостях (например, в водном растворе уксусной кислоты СН₃СООН).
 Чем более полярны молекулы, тем сильнее проявляется ориентационное взаимодействие. Энергия ориентационного взаимодействия (Энергия Кеезома) зависит от полярности молекул (то есть от электрического момента диполя молекул):

$$E_k = -rac{\mu_1\mu_2}{2\piarepsilon_0 r^3},$$
 где $\mu_{\rm I},~\mu_2$ — дипольные моменты взаимодей-

ствующих молекул, r — расстояние между диполями.

 Индукционное взаимодействие — взаимодействие между полярными и неполярными молекулами (например, в рас-

творе ацетона
$$\begin{array}{c} 0 \\ C \\ H_3C \end{array}$$
 в четыреххлористом углероде

 ${
m CCl}_4$). Под воздействием поля полярных молекул (например, ацетона) в неполярных молекулах (например, четыреххлористого углерода) происходит смещение электронной плотности и возникает наведенный диполь, который в дальнейшем участвует в электростатическом взаимодействии с постоянным диполем полярной молекулы. Энергия индукционного взаимодействия (энергия Дебая) зависит как от полярности молекул (то есть от электрического момента диполя молекул),

так и поляризуемости неполярных молекул: $E_{\rm Д} = -\frac{2\mu_{\rm \tiny HBB}^2\gamma}{r^6}$, где

- $\mu_{\text{нав.}}$ момент наведенного диполя, r расстояние между наведенным диполем и диполем.
- □ Дисперсионное взаимодействие слабое взаимодействие неполярных молекула. В любой момент времени в неполярных молекулах в результате независимых колебаний электронного облака и атомных ядер их электрические центры тяжести могут не совпадать, что приводит к возникновению мгновенного диполя. Перераспределение электронных зарядов в окружающих данных диполь молекулах ответственно за образование слабых связей электростатической природы. Например, неполярные органические растворители гексан C_6H_{14} , бензол C_6H_6 . Энергия дисперсионного взаимодействия (энергия Лондона) зависит как от размера молекул и общего числа электронов в мгновенных диполях: $E_{\rm A} = -\frac{2\mu_{\rm MIT}^2/^2}{\pi^6}$, где $\mu_{\rm MIT}$ —

момент мгновенного диполя, r — расстояние между мгновенными липолями.

□ Водородная связь — разновидность межмолекулярных либо внутримолекулярных взаимодействий, осуществляемая между атомами водорода и наиболее электроотрицательными атомами, такими как F, O, Cl, N. Пример межмолекулярной водородной

связи:
$$H \nearrow O \nearrow H$$
 (наличие водородной связи влияет

на аномально высокие температуры кипения, так для воды $T_{\mbox{\tiny кип.}}=100\ ^{\circ}{\rm C}$, а для гидридов других элементов той же VI группы ${\rm H_2S}$, ${\rm H_2Te}-T_{\mbox{\tiny кип.}}=-62\ ^{\circ}{\rm C}$ и $T_{\mbox{\tiny кип.}}=-2\ ^{\circ}{\rm C}$ соответственно).

(салициловый альдегид).

Агрегатные состояния вещества:

	конденсированное	(твердое	или	жидкое:	лед и	вода)
--	------------------	----------	-----	---------	-------	------	---

□ газообразное (например, пар).

Говоря об агрегатном состоянии вещества, подразумевают его состояние при стандартных условиях: $T=298,15~\mathrm{K}$, $p=101,325~\mathrm{k}\Pi a$.

Повышение температуры ведет к переходу вещества в газообразное состояние, понижение — в конденсированное. Твердое вещество может находиться в кристаллическом (более устойчивое) или аморфном состоянии.

Кристаллическое вещество состоит из упорядоченных по всем направлениям частиц, вследствие чего каждый кристалл имеет определенную форму. Так, кристаллы NaCl имеют форму куба, а кристаллы KNO_{\circ} напоминают призму.

Аморфное вещество (клей, смола, полимеры) состоит из неупорядоченных частиц. В отличие от кристаллических веществ аморфные не имеют определенной температуры плавления, а плавятся в некотором температурном интервале, постепенно превращаясь в жидкость. Некоторые вещества (оксид кремния(IV) SiO₂, углерод С (алмаз и графит)) могут находиться как в кристаллическом, так и в аморфном состоянии.

Растворы

Раствор — гомогенная система, в состав которой входят два или более компонента (растворенные вещества, равномерно распределенные в растворителе). Растворы бывают газообразными, жидкими и твердыми. Например, вдыхаемый воздух — газообразный раствор, основные компоненты которого — азот N_2 (78%) и кислород O_2 (21%).

Растворитель — компонент раствора, находящийся в одинаковых условиях, в том же агрегатном состоянии, что и раствор. Если компоненты раствора представлены в одном агрегатном состоянии, растворителем называют то вещество, которого в растворе содержится больше. Например, в образце классической водки этилового спирта меньше, чем воды, поэтому вода является растворителем. В зависимости от природы растворителя растворы делят на водные (например, водный раствор этилового спирта) и неводные (например, раствор смеси тяжелых парафинов в гексане).

Растворимость вещества (s) — максимальное количество вещества, которое может раствориться в 100 г воды при определенной температуре. Полученный раствор называют *насыщенным*. Единица растворимости вещества — $\it грамм$.

Растворимостью вещества также называют его молярную концентрацию в насыщенном растворе. Как правило, при увеличении температуры растворимость твердых веществ возрастает, однако существуют и исключения из правил (например, сульфат лития ${\rm Li_2SO_4}$ или карбонат лития ${\rm Li_2CO_3}$).

Так, для бромида калия KBr при температуре 0 °C: s_0 °C (KBr) = 53.5 г, а при температуре 100 °C — s_{100} °C (KBr) = 103.3 г; для Li_2SO_4 при температуре 0 °C: s_0 °C (Li_2SO_4) = 15.4 г, а при температуре 80 °C — s_{80} °C (Li_2SO_4) = 8.7 г.

Коэффициент растворимости (k_s) — численное значение, равное отношению максимально возможной массы растворяе-

мого вещества к массе растворителя: $k_{s}=\frac{m(\text{B-Ba})}{m(\text{p-ля})}$, где m (в-ва) —

максимальная масса вещества, способная раствориться в растворителе, Γ ; m (р-ля) — масса растворителя, Γ .

Так, для насыщенного водного раствора нитрата калия KNO $_3$: $k_{s,\,20\,^{\circ}\mathrm{C}}(\mathrm{KNO}_3)=0,316$, а для практически нерастворимого в водном растворе гидроксида бария Ba(OH) $_2$: $k_{s,\,20\,^{\circ}\mathrm{C}}(\mathrm{Ba(OH)}_2)=0,039$.

Закон Генри. Растворимость газа в жидкости при постоянной температуре прямо пропорциональна его парциальному давлению над раствором. Математическое выражение закона: $C_1 = k \cdot p_1$, где C_1 — концентрация газа в растворе, p_1 — парциальное давление газа над раствором, k— коэффициент Генри.

Массовая доля вещества w(A) (читается «дубль-вэ») — безразмерная величина, численно равная отношению массы раство-

ренного вещества
$$m_1(A)$$
 к массе раствора: $w(A) = \frac{m_1(A)}{m(p-pa)} \cdot 100 \%$.

Выражается в процентах (%), тысячной части единицы — промилле (‰) и в миллионных долях (млн $^{-1}$). Например, говоря о 40%-ном водном растворе нитрата калия KNO $_3$, мы подразумеваем, что в 100 г воды растворено 40 г соли.

Объемная доля вещества $\phi(A)$ (читается «фи») — безразмерная величина, численно равная отношению объема газообразного или жидкого вещества $V_1(A)$ к общему объему смеси или раство-

ра:
$$\phi(A) = \frac{V_1(A)}{V(\text{p-pa})} \cdot 100 \%$$
. Выражается в процентах (%). Например,

объемная доля кислорода ${\rm O}_2$ в воздухе составляет 21~%. Это означает, что в $100~\rm n$ воздуха содержится $21~\rm n$ кислорода.

Молярная доля вещества $\chi(A)$ (читается «хи») — безразмерная величина, численно равная отношению химического количества вещества $n_1(A)$ к суммарному химическому количеству всех $n_1(A)$

компонентов раствора
$$\sum n_i$$
: $\chi(A) = \frac{n_1(A)}{\sum n_i} \cdot 100 \,\%$. Выражается

в процентах (%).

Массовая концентрация вещества T(A), или титр — величина, численно равная отношению массы вещества $m_1(A)$ к объему

раствора: $T(A) = \frac{m_1(A)}{V({\bf p}\text{-}{\bf p}{\bf a})}$. Единица титра — $\kappa \varepsilon/\partial m^3$, а также $m\varepsilon$ -%

(в медицине показывает, сколько миллиграмм вещества содержится в 100 мл раствора).

Молярная концентрация вещества c(A) — величина, численно равная отношению химического количества вещества $n_1(A)$ к объему раствора: $c(A) = \frac{n_1(A)}{V(\text{p-pa})}$. Единица молярной концентрации вещества — $monb/\partial m^3$.

Эквивалентная концентрация $c[\frac{1}{z^*}(A)]$ — величина, численно равная отношению химического количества эквивалентов веще-

ства
$$n_1[\frac{1}{z^*}(A)]$$
 к объему раствора: $c[\frac{1}{z^*}(A)] = \frac{n_1[\frac{1}{z^*}(A)]}{V(\text{p-pa})}$. Единица

эквивалентной концентрации — $monb/\partial m^3$.

Моляльность раствора b(A) — величина, численно равная отношению химического количества вещества $n_1(A)$ к объему растворителя m (р-ля): $b(A) = \frac{n_1(A)}{m(\text{p-ля})}$. Единица моляльности

раствора — моль/кг.

Электролитическая диссоциация — процесс распада структурных единиц вещества на отрицательно и положительно заряженные частицы, анионы и катионы соответственно.

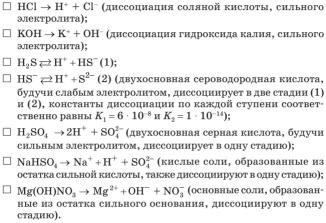
Электролиты — вещества, растворы (расплавы) которых проводят электрический ток.

В зависимости от степени распада на ионы электролиты делятся на следующие группы:

 □ сильные, которые диссоциируют полностью (почти все соли, например хлорид натрия NaCl; многие неорганические кислоты, например HCl, HNO₃, H₂SO₄, HMnO₄, HBr, HClO₃); □ слабые, диссоциирующие на ионы лишь частично (почти все органические кислоты, например, уксусная кислота CH_3COOH ; некоторые минеральные кислоты, например, H_2S , HNO_2 , H_2SiO_3 , HF, HClO; вода H_2O).

Неэлектролиты — вещества, растворы (расплавы) которых не проводят электрический ток (кислород O_2 , многие органические соединения (бензол C_6H_6)).

Константа диссоциации ($K_{\rm дисс.}$) — величина, численно равная отношению произведений концентраций ионов, образовавшихся после диссоциации, к концентрации исходных непродиссоциировавших веществ, с учетом стехиометрических коэффицинонтов, после установления динамического равновесия. Для водного раствора уксусной кислоты $\mathrm{CH_3COOH}$, уравнение диссоциации которой — $\mathrm{CH_3COOH} \rightleftarrows \mathrm{H^+} + \mathrm{CH_3COO^-}$, — константа


диссоциации выражается формулой:
$$K_{\text{дисс.}} = \frac{c(\text{H}^+) \cdot c(\text{CH}_3\text{COO}^-)}{c_{\text{недисс.}}(\text{CH}_3\text{COOH})}$$

и равна $K_{\text{писс}} = 1.75 \cdot 10^{-5}$.

Степень диссоциации (α) — величина, равная отношению химического количества продиссоциировавшего на ионы вещества $n_{\text{дисс.}}$ к общему химическому количеству вещества $n_{\text{общ.}}$: $\alpha = \frac{n_{\text{дисс.}}}{n_{\text{обш.}}}$.

Закон разбавления Оствальда связывает константу диссоциации слабого электролита ($K_{\text{дисс.}}$) со степенью диссоциации (α): $K=\frac{c\cdot\alpha^2}{1-\alpha}$. В случае очень слабого электролита степень диссоциации стремится к нулю: $\alpha\to 0$, следовательно, закон разбавления Оствальда преобразуется в форму: $K=c\cdot\alpha^2$, откуда $\alpha=\sqrt{\frac{K}{c}}$.

Протонная теория Й. Н. Бренстеда и Т. М. Лоури. Кислотой называют то соединение, которое в растворе диссоциирует с образование ионов водорода H⁺; щелочами считают вещества, отщепляющие гидроксид-ионы OH⁻:

Реакция ионного обмена — химическая реакция, при которой не наблюдается изменение степеней окисления и зарядов взаимодействующих ионов. Например, ионно-молекулярное уравнение реакции нейтрализации $HCl+NaOH \rightarrow NaCl+H_2O$; сокращенное ионно-молекулярное уравнение той же реакции нейтрализации — $H^++OH^- \rightarrow H_2O$.

Константа растворимости (K_s) малорастворимого электролита — величина, численно равная произведению концентраций ионов в насыщенном растворе в степенях, соответствующих стехиометрическим коэффициентам, при данной температуре.

Так, при выпадении из раствора осадка общего состава A_nB_m , между ионами насыщенного раствора A^{m+} , B^{n-} и веществом осадка будет существовать динамическое равновесие: $A_nB_{m(\text{осадок})} \rightleftharpoons nA_{(\text{p-p})}^{m+} + mB_{(\text{p-p})}^{n-}$.

Математическое выражение константы растворимости будет иметь следующий вид: $K_s = c^n(A^{m+}) \cdot c^m(B^{n-})$. Константа растворимости

хлорида серебра AgCl при 25 °C: $K_{s,25\,°C}$ (AgCl) = 1,77 · 10^{-10} , а растворимость сульфида ртути HgS при 25 °C на несколько порядков ниже: $K_{s,25\,°C}$ (HgS) = $4\cdot 10^{-53}$.

Условие выпадения осадка: произведение концентраций ионов в растворе должно быть больше константы растворимости K_s малорастворимого электролита.

Математическое выражение данного условия: $c^n(A^{m+}) \cdot c^m(B^{n-}) > K_s$ (A^nB^m). При смешении 10^{-5} М раствора AgNO $_3$ с 10^{-3} М раствором NaCl при температуре 25 °C выпадает белый осадок AgCl, так как c (Ag $^+$) · c (Cl $^-$) = $10^{-5} \cdot 10^{-3} = 10^{-8} > K_s$ (AgCl) = $= 1,77 \cdot 10^{-10}$. Если же концентрацию раствора NaCl путем разбавления уменьшить на три порядка (c (Cl $^-$) = 10^{-6} М), то осадка наблюдаться не будет: c (Ag $^+$) · c (Cl $^-$) = $10^{-5} \cdot 10^{-6} = 10^{-11} < K_s$ (AgCl) = $1,77 \cdot 10^{-10}$.

Ионное произведение воды (K_w) — постоянная величина, равная произведению концентрации ионов водорода и гидроксид-ионов: $K_w = c \ (\mathrm{H^+}) \cdot c \ (\mathrm{OH^-}) = 10^{-14}$.

Нейтральные растворы — растворы, в которых концентрации ионов водорода и гидроксид-ионов равны: $c(H^+)=c(OH^-)=10^{-7}$ моль/л (например, чистая дистиллированная вода).

Кислые растворы — растворы, в которых концентрация ионов водородов больше концентрации гидроксид-ионов: $c\left(\mathbf{H}^{+}\right)>c\left(\mathbf{OH}^{-}\right)$, $c\left(\mathbf{H}^{+}\right)>10^{-7}$ моль/л (растворы минеральных и органических кислот).

Щелочные растворы — растворы, в которых концентрация ионов водородов меньше концентрации гидроксид-ионов: $c\left(\mathrm{H}^{+}\right) < c\left(\mathrm{OH}^{-}\right)$, $c\left(\mathrm{H}^{+}\right) < 10^{-7}$ моль/л (водные растворы гидроксидов щелочных и щелочноземельных металлов).

Водородный показатель pH — величина, численно равная десятичному логарифму концентрации ионов водорода ${\rm H^+}$, взятому с обратным знаком: pH = $-\lg c$ (${\rm H^+}$). Следовательно, в нейтральной среде pH = 7, в кислой и щелочной — pH < 7 и pH > 7 соответственно.

Гидролиз солей — реакция взаимодействия солей с водой, протекающая с образованием слабодиссоциирующих веществ либо

газа. Общая схема процесса: $A^{n+} + H_2O \rightleftharpoons AOH^{(n-1)+} + H^+$. Гидролиз соли, образованной слабым основанием (гидроксидом железа(III) Fe(OH)₃, цинка Zn(OH)₂, меди(II) Cu(OH)₂, алюминия Al(OH)₃) и сильной кислотой (азотной HNO₃, хлороводородной HCl, бромоводородной HBr, серной H_2SO_4): $Zn^{2+} + H_2O \rightleftharpoons ZnOH^+ + H^+$, $B^{n-} + H_2O \rightleftharpoons HB^{(n-1)-} + OH^-$.

Гидролиз соли, образованной сильным основанием (гидроксидом щелочного и щелочноземельного металла (гидроксиды калия КОН, натрия NaOH, кальция Ca(OH)₂, бария Ba(OH)₂)) и слабой кислотой (азотной HNO₂, угольной H_2 CO₃, сероводородной H_2 S): $CO_3^2 + H_2O \rightleftharpoons HCO_3^- + OH^-$, $A^{n+} + B^{m-} + H_2O \rightarrow AOH^{(n-1)+} + HB^{(m-1)-}$.

Гидролиз соли, образованной слабым основанием и слабой кислотой: $2\text{Al}^{3+} + 3\text{S}^{\frac{2-}{2}} + 6\text{H}_2\text{O} \rightarrow 2\text{Al}(\text{OH})_3 \uparrow + 3\text{H}_2\text{S} \downarrow$ (практически полностью реакция протекает с образованием осадка гидроксида алюминия и газа — сероводорода).

Электролиз — электрохимический окислительно-восстановительный процесс, протекающий на *катноде* (отрицательно заряженном электроде) и *аноде* (положительно заряженном электроде) в результате прохождения постоянного электрического тока через раствор (либо расплав). Уравнения процесса электролиза раствора хлорида натрия NaCl:

$$\begin{array}{c} NaCl \\ \text{катод (-)} \longleftarrow Na^+ + Cl^- \longrightarrow \text{анод (+)} \\ H_2O & H_2O \\ 2H_2O + 2e^- = H_2 + 2OH^- & 2Cl^- = Cl_2 + 2e^- \cdot \\ \longrightarrow & \longleftarrow \\ 2H_2O + 2NaCl = H_2 + 2NaOH + Cl_2 \end{array}$$

Гальванический элемент — система, состоящая из анода и катода, в которой энергия окислительно-восстановительной реакции превращается в электрическую энергию.

Коррозия металлов — окислительно-восстановительная реакция, в результате которой происходит разрушение металлов.

Виды коррозии металлов

- □ Химическая проходит в неэлектропроводной среде, не сопровождается образованием гальванического элемента.
- □ Газовая химическая металлы разрушаются под действием газов или паров агрессивных веществ воды H_2O , углекислого газа CO_2 , кислорода O_2 , хлороводорода HCl и др.; например: медленно текущая коррозия меди и ее сплавов (бронза, латунь) в атмосфере воздуха: $2Cu + O_2 + CO_2 + H_2O \rightarrow (CuOH)_2CO_3$ (образуется зеленый налет карбонат гидроксомеди(II)).
- □ Жидкостная химическая металлы разрушаются при взаимодействии их с агрессивными жидкостями-неэлектролитами нефть, бромом Br_2 , олеумом (SO_3 в 100%-ной H_2SO_4); например: коррозия железных труб при перекачке нефти, содержащей в своем составе агрессивные соединения серы (меркаптаны RSH (R алкильный радикал), сероводород H_2S : Fe + S (из нефти) \rightarrow FeS.
- □ Электрохимическая протекает в электропроводной среде с образованием гальванических элементов; например: часто встречающаяся коррозия оцинкованной жесть в присутствии природной воды:

оцинкованная жесть (Fe + Zn)
$$\begin{array}{c|c} H_2O & \\ CO_2 & O_2 \\ \hline Fe, \ \text{катод (-)} \longleftrightarrow & Zn, \ \text{анод (+)} \\ H_2O & \\ 2H_2O + O_2 + 4e^- = 4OH^- & Zn = Zn^{2+} + 2e^- \end{array}$$

 $2{
m H}_2{
m O}+{
m O}_2+2{
m Zn}=2{
m Zn}({
m OH})_2$ Дисперсионные системы — гетерогенные смеси (в отличие от гомогенных смесей в них с помощью оптических приборов либо

визуально можно обнаружить составные части), в которых одна часть ($\partial ucnepcuonhas\ \phi asa$) равномерно распределена в другой ($\partial ucnepcuonhas\ cpe\partial a$).

	исперсионные системы (в зависимости от агрегатного состоя- ся составных частей):
	суспензии: дисперсионная фаза — твердая, дисперсионная среда — жидкая (например, зубная паста, эмалевые краски);
	коллоидные растворы — высокодисперсные системы, состоящие из частиц твердой дисперсионной фазы диаметром от 1 мкм до 1 нм, называемых мицеллами, и жидкой дисперсионной среды. Получение коллоидного раствора йодида серебра AgI при смешении сильноразбавленных растворов нитрата серебра AgNO $_3$ и иодида калия KI: AgNO $_3$ + KI \rightarrow AgI \downarrow + KNO $_3$ (ионно-молекулярное уравнение имеет следующий вид: Ag $^+$ + NO $_3^-$ + K $^+$ + I $^ \rightarrow$ AgI \downarrow + K $^+$ + NO $_3^-$);
	$\mathit{эмульсии}$: дисперсионная фаза и среда — жидкие (например, капли бензина в воде, молоко);
	nehbi: дисперсионная фаза — газообразная, дисперсионная среда — жидкая (например, пена на капучино);
	$a \ni posonu:$ дисперсионная фаза — твердая, дисперсионная среда — газообразная (например, смог, пыль, дым, лак для волос);
	аэрозоли жидкости в газе: дисперсионная фаза — жидкая, дисперсионная среда — газообразная (например, туман);
	nopucmыe материалы: дисперсионная фаза — газообразная, дисперсионная среда — твердая (например, пемза).
Ст	роение мицеллы
	$\mathcal{A}\partial po$ коллои ∂ ной частицы состоит из большого числа m молекул йодида серебра: $m[\mathrm{AgI}].$
	Потенциалопределяющие ионы — ионы, входящие в состав ядра коллоидной частицы, чьи растворимые соли представлены в избытке. Они адсорбируются на ядре коллоидной частицы. При избытке иодида калия потенциалопределяющими ионами являются n ионов йода: $m[AgI]nI^-$.
	Π ротивоионы — ионы в количестве $(n-x)$, которые электростатически притягиваются потенциалопределяющими ионами (в данном случае это ионы калия), прочно адсорбируются на

поверхности ядра и завершают построение $a\partial copбционного$ cлоя: $n\Gamma^-(n-x)\,K^+.$

 \Box Гранула — ядро коллоидной частицы с построенным адсорбционным слоем: $\{m \ [\mathrm{AgI}] n \ I^- (n-x) \ K+\}^x^-$.

Мицелла — электронейтральная частица, поэтому в данном случае электроотрицательный заряд гранулы компенсируется оставшейся частью противоионов калия, образуя $\partial u \phi \phi y$ зный слой мицеллы. Окончательное строение коллоидной частицы с ядром и адсорбционным и диффузным слоями имеет следующий вид: $\{m \text{ [AgI]} n \text{ II} - (n-x) K^*\}^x x K^*$.

Химическая кинетика и термодинамика

Гомогенная реакция — химическая реакция, которая полностью протекает в одной (в основном, газовой либо жидкой) фазе. Гомогенная реакция в *газовой* фазе: $2NO_{(r)} + O_{2(r)} = 2NO_2$.

Гетерогенная реакция — химическая реакция, которая протекает на границе раздела фаз: $C_{(\text{ти.})} + O_{2(\text{r})} = CO_{2(\text{r})}$ (реакция горения углерода).

Скорость гомогенной реакции — величина, численно равная изменению молярной концентрации (Δc) любого участника реакции за некоторый интервал времени (Δt): $v_{\rm cp.} = \frac{|c_2 - c_1|}{|t_2 - t_1|} = \frac{\Delta c}{\Delta t}$.

Факторы, влияющие на скорость гомогенной реакции:

	температур	a;
--	------------	----

□ давление (для газов);

□ присутствие катализатора;

□ природа реагирующих веществ;

 \square молярные концентрации (c) реагентов.

Скорость гетерогенной реакции — величина, численно равная изменению химического количества (Δn) любого реагента либо продукта реакции за некоторый интервал времени (Δt), с учетом площади поверхности раздела фаз (S): $v_{\rm cp.} = \frac{\Delta n}{\Delta t \cdot S}$.

Сложная химическая реакция — реакция, протекающая в несколько *простых* (элементарных) стадий. Например, многостадийная реакция получения фенола из бензола и пропилена:

$$\begin{array}{c|c} & & H_{3}C \\ & & \\ &$$

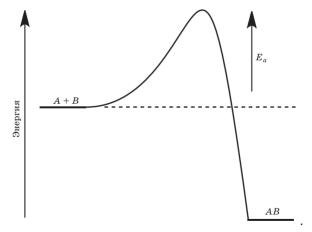
$$\begin{array}{c} H_{3}C \stackrel{H}{\smile} CH_{3} & OOH \\ & H_{3}C \stackrel{C}{\smile} CCH_{3} \\ & & \\ OOH \\ & & \\ H_{3}C \stackrel{C}{\smile} CCH_{3} \\ & & \\ &$$

Согласно закону действующих масс как основному закону химической кинетики, скорость простой реакции (v) $aA+bB+cC\to ...$ прямо пропорциональна произведению молярных концентраций (c) реагирующих веществ (A, B, C) в степенях, численно равных стехиометрическим коэффициентам (a, b, c) в уравнении реакции: $v=k\cdot c^a(A)\cdot c^b(B)\cdot c^c(C)$, где k— константа скорости гомогенной реакции. Для гетерогенных реакций в уравнении расчета скорости реакции учитываются только газообразные либо растворенные реагенты. Так, для гетерогенной реакции $aA_{(r)}+bB_{(rn.)}+cC_{(rn.)}\to ...$ скорость высчитывается по формуле: $v=k\cdot c^a(A)$.

Правило Вант-Гоффа. Скорость химической реакции увеличивается в 2-4 раза при возрастании температуры на каждые $10\,^{\circ}$ С. Математически данная зависимость выражается формулой: $v_{T_2} = \frac{T_2-T_1}{10}$

 $\frac{v_{T_2}}{v_{T_1}}=\frac{T_2-T_1}{\gamma}$, где v_{T_2} , v_{T_1} — скорости реакции при температурах T_2 ,

 T_1 соответственно, у — температурный коэффициент скорости реакции (у = 2 \div 4).


Теория активации Аррениуса. Протекание химической реакции имеет место только при столкновении частиц, обладающих опре-

деленной энергией, необходимой для преодоления возникающих между электронными оболочками реагирующих частиц сил отталкивания. Такие частицы называют активными.

Активированный комплекс — неустойчивое возникающее при столкновении активных частиц переходное состояние, характеризующееся перераспределением связей, распад которого ведет к образованию продуктов реакции:

$$\begin{array}{c} H_2 + I_2 \longrightarrow \begin{bmatrix} H - H \\ \vdots & \vdots \\ I - I \end{bmatrix} \longrightarrow 2HI. \\ \text{активированный} \\ \text{комплекс} \end{array}$$

Энергия активации (E_a) — минимальное количество энергии, необходимое для протекания химической реакции, численно равное разности между энергией активированного комплекса и средней энергией реагентов:



Единица энергии активации — Дж/моль.

Уравнение Аррениуса показывает связь между энергией активации и скоростью протекания химической реакции: $E_a = -RT \ln \left(\frac{k}{A} \right)$, где R — универсальная газовая постоянная,

k — константа скорости реакции, A — постоянный множитель, зависящий от природы реагирующий веществ, T — температура.

Катализатор — вещество, принимающее участие в реакции и изменяющее скорость ее протекания (благодаря понижению энергии активации реакции), но остающееся химически и количественно неизменным по окончании реакции:

(реакция между веществами A и B протекает быстрее в присутствии катализатора (кат.), что обусловлено понижением энергии активации реакции E_{o}).

Пример каталитического процесса: $N_2 + 3H_2 - \frac{500 \, ^{\circ} C, \, 350 \, \text{атм.}}{Fe + Al_2 O_3 + K_2 O} > 2NH_3$ (промышленный способ получения аммиака, в качестве катали-

затора используется пористое железо $Fe\ c$ примесью оксидов алюминия и калия $Al_{\nu}O_{3},\ K_{\nu}O)$.

Катализаторы называют *положительными*, если они ускоряют протекание реакции, и *отрицательными* (их называют *ингибиторами*) — если замедляют.

Гомогенный катализ — изменение скорости реакции, в которой реагирующие вещества и катализатор находятся в одной фазе: $2SO_2 + O_2 \stackrel{NO}{\longrightarrow} 2SO_3$ (одна из стадий нитрозного способа получения серной кислоты, в качестве катализатора выступает оксид азота(II)).

Гетерогенный катализ — изменение скорости реакции, в которой реагирующие вещества и катализатор находятся в разных фазах. Как правило, реакция протекает на поверхности катализатора, на его *активных центрах*. Например, $2SO_2 + O_2 - \frac{V_2O_5}{2} + 2SO_3$ (получение оксида серы(VI) SO_3 из оксида серы(IV) SO_2 в присутствии катализатора оксида ванадия (V) V_2O_5).

Ферменты — сложные белковые вещества, изменяющие скорость биохимических (протекающих в живых организмах) реакций. Например, $(C_6H_{10}O_5)_n$ — $nC_6H_{12}O_6$ (в слюне человека сориммал

держится фермент — птиалин, селективно расщепляющий крахмал до легкоусвояемой глюкозы).

Необратимые химические реакции — реакции, в результате которых полностью расходуются реагенты (записаны в левой части уравнения реакции) и образуются продукты реакции (записаны в правой части уравнения). Как правило, реакции, идущие с выпадением осадка, выделением газа или образованием малодиссоциирующего вещества (например, вода) — необратимые. Например, $\mathrm{Na_2CO_3} + \mathrm{2HCl} \to 2\mathrm{NaCl} + \mathrm{CO_2} + \mathrm{H_2O}$ (необратимость реакции наблюдается при условии удаления углекислого газа из реакционной смеси).

Обратимые химические реакции — реакции, одновременно протекающие в двух направлениях: как слева направо (прямая реакция), так и справа налево (обратная реакция): $N_2 + 3H_2 \rightleftharpoons 2NH_3$.

Состояние химического равновесия — такое динамическое состояние системы, при котором наблюдается равновесие скоростей прямой и обратной химической реакции: $v_{\rm mp} = v_{\rm ofm}$.

Константа равновесия ($K_{\text{рави.}}$) для обратимой реакции — величина, численно равная отношению произведения молярных концентраций продуктов реакции к произведению молярных концентраций исходных веществ с учетом стехиометрических коэффициентов в уравнении реакции $aA+bB \rightleftharpoons cC+dD$:

$$K_{\text{pabh.}} = \frac{c^c(C) \cdot c^d(D)}{c^a(A) \cdot c^b(B)}.$$

Смещение положения химического равновесия — переход из одного равновесного положения (при котором $v_{\rm пр.}=v_{\rm oбp.}$) под влиянием внешнего воздействия (изменение температуры, давления или концентрации веществ) в другое химическое равновесие (при котором $v_{\rm пр.}'=v_{\rm oбp}'$). Равновесие смещается вправо, если увеличивается концентрация веществ, написанных в правой части уравнения (продукты реакции); влево — если повышается концентрация веществ, написанных в левой части заключения (исходные вещества).

Принцип Ле-Шателье. Если на находящуюся в состоянии равновесия систему оказать определенное воздействие (изменить температуру, давление и концентрации веществ), то превалировать будет тот из двух противоположно направленных процессов, который будет ослаблять данное воздействие. Принцип Ле-Шателье для обратимой экзотермической (идущей с выделением теплоты) реакции получения аммиака: $N_2(r) + 3H_2(r) \rightleftharpoons 2NH_3(r) + 45,9 кДж.$

- □ Влияние концентрации веществ. Увеличение концентрации исходных веществ (азота либо водорода) приводит к смещению равновесия вправо; увеличение концентрации продукта реакции (аммиака) приводит к смещению равновесия влево.
- □ Влияние температуры. При увеличении температуры равновесие смещается влево (в сторону обратной эндотермической

смещается в сторону образования меньшего количества газообразных веществ, значит вправо (при получении аммиака из суммарно 4 молей газа образуется 2 моля газа); при понижении давления, наоборот, равновесие смещается влево.
Фотохимическая реакция — химическая реакция, протекающая
под действием излучения света: ${\rm CO_2 + H_2O} \xrightarrow{hv}$ органическое вещество + ${\rm H_2O}$ (реакция фотосинтеза, происходящая в присутствии хлорофилла).
Цепная реакция — химическая многостадийная реакция, состоящая из нескольких простых реакций, причем возможность наступления каждой последующей стадии зависит от успешного прохождения предыдущей.
Стадии цепной реакции (на примере реакции хлорирования метана ${ m CH_4}$).
\square Зарождение цепи. Под действием квантов электромагнитного излучение ($h\nu$) происходит разрыв ковалентной связи молекулы хлора Cl_2 с образованием свободных радикалов Cl_{\bullet} — активных частиц с неспаренными электронами: $\mathrm{Cl}_2 \xrightarrow{h\nu} 2\mathrm{Cl}_{\bullet}$.
□ <i>Развитие цепи</i> . На данной стадии происходит взаимодействие свободных радикалов с молекулами метана, причем каждый акт заканчивается образованием новых сложных по составу радикалов:

• $\mathrm{Cl} ext{-} + \mathrm{CH}_4 o \mathrm{HCl} + ext{-}\mathrm{CH}_3$ (образование метильного радика-

• •CH $_3$ + Cl $_2$ \rightarrow CH $_3$ Cl + •Cl (образование первого продукта

• •Cl + CH $_3$ Cl \rightarrow HCl + •CH $_2$ Cl (образование хлорметильного

реакции — хлорметана CH₃Cl);

реакции); при уменьшении температуры происходит смещение

При уралицации партация При уралицации партация рариорасиа

равновесия вправо.

ла •CH₃);

радикала •CH₂Cl);

- •CH $_2$ Cl + Cl $_2$ \rightarrow CH $_2$ Cl $_2$ + •Cl (образование второго продукта реакции дихлорметана CH $_9$ Cl $_9$);
- •Cl + CH₂Cl₂ → •CHCl₂ + HCl(образование дихлорметильного радикала •CHCl₂);
- •С $HCl_2 + Cl_2 \to CHCl_3 + •Cl$ (образование третьего продукта реакции трихлорметана (хлороформа) $CHCl_3$);
- CHCl $_3$ + •Cl \rightarrow •CCl $_3$ + HCl (образование трихлорметильного радикала •CCl $_3$);
- • $\operatorname{CCl}_3 + \operatorname{Cl}_2 \to \operatorname{CCl}_4 + \operatorname{*Cl}$ (образование четверного продукта реакции четыреххлористого метана CCl_4).
- □ Обрыв цепи. Происходит при столкновении двух свободных радикалов, а также в случае образования малоактивного радикала:
 - •Cl + •Cl \rightarrow Cl₂ (столкновение двух радикалов хлора Cl•);
 - •С H_3 + •С H_3 \to С $_2$ H_6 (столкновение двух метильных радикалов •С H_3);
 - •Cl + •CH $_3$ \to CH $_3$ Cl (столкновение радикала хлора Cl с метильным радикалом •CH $_3$).

В любой момент времени в неполярных молекулах в результате независимых колебаний электронного облака и атомных ядер их электрические центры тяжести могут

Стандартная теплота образования химического соединения $\Delta_1 H_{298}^\circ$ — тепловой эффект реакции образования 1 моль химического соединения из простых веществ, находящихся в том агрегатном состоянии, при котором они термодинамически наиболее устойчивы при стандартных условиях. Например: $\Delta_1 H_{298}^\circ$ (CO₂) = -393.5 кДж/моль.

Термохимические уравнения — химические уравнения, в которых отмечены тепловые эффекты реакции. Термодинамическая форма: $C_{\text{(графиг)}} + O_{2(r)} \rightarrow CO_{2(r)} + 395,5 \text{ кДж}, \Delta_f H_{298}^{\circ}(CO_2) = -395,5 \text{ кДж/моль,}$ термохимическая форма: $C_{\text{(графиг)}} + O_{2(r)} \rightarrow CO_{2(r)} + 395,5 \text{ кДж}$.

Закон Гесса. Тепловой эффект химической реакции характеризуется только от начального и конечного состояния системы, и не зависит способа перехода системы от одного состояния в другое.

Следствие из закона Гесса. Стандартный тепловой эффект химической реакции равнее разности сумм стандартных теплот образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов: $\Delta_f \text{H}_{298}^\circ$ (реакции) = $\sum \Delta_f \text{H}_{298}^\circ$ (продукты) – $\sum \Delta_f \text{H}_{298}^\circ$ (реагенты).

Раздел II

Неорганическая химия

Раздел II. Неорганическая химия

Важнейшие классы неорганических соединений

Оксиды

Оксиды — химические соединения кислорода (в степени окисления –2) с менее электроотрицательными элементами.

Классификация

- \square По агрегатному состоянию:
 - твердые (Na₂O, ZnO, Al₂O₃);
 - жидкие (N₂O₄, SO₃);
 - газообразные (CO₂, NO₂, SO₂).
- □ По химическим свойствам:
 - солеобразующие:
 - кислотные (${\rm CO_2, N_2O_5, SO_3}$), образующие при гидратации кислородсодержащие кислоты (угольную ${\rm H_2CO_3}$, азотную ${\rm HNO_3}$ и серную ${\rm H_2SO_4}$ соответственно);
 - основные (CaO, $\mathrm{Na_2O}$, $\mathrm{Fe_2O_3}$), образующие при гидратации основания (гидроксид кальция $\mathrm{Ca(OH)_2}$, натрия NaOH и железа $\mathrm{Fe(OH)_3}$ соответственно);
 - амфотерные (${\rm ZnO,\,Al_2O_3}$), проявляющие свойства как кислотных, так и основных оксидов (так, оксиду алюминия ${\rm Al_2O_3}$ соответствует гидроксид алюминия ${\rm Al}({\rm OH})_3$ и алюминаты, например метаалюминат натрия ${\rm NaAlO_a}$);
 - несолеобразующие (NO, N₂O, CO).
- □ По растворимости в воде:
 - растворимые (все кислотные оксиды (за исключением SiO₂), оксиды щелочных Li₂O, Na₂O, K₂O, Rb₂O, Cs₂O и щелочноземельных CaO, SrO, BaO металлов);
 - нерастворимые (амфотерные оксиды ZnO, Al₂O₂).

Получение

- □ Взаимодействие простых веществ (металлов или неметаллов) с кислородом: $2Mg + O_2 \rightarrow 2MgO$; 🗆 взаимодействие некоторых сложных веществ с кислородом (реакции горения или окисления): $4\text{FeO} + O_2 \rightarrow 2\text{Fe}_2O_3$; □ реакция сплавления солей с менее летучими оксидами: $Na_{o}CO_{o} + SiO_{o} \rightarrow Na_{o}SiO_{o} + CO_{o};$ □ окислительно-восстановительные реакции с участием простых веществ и сильных окислителей — кислородсодержащих минеральных кислот (оксокислот): Fe + 4HNO $_{3\,({\rm pag5},)}$ \rightarrow Fe(NO $_3$) $_3$ + + NO + 2H $_2$ O, 2Fe + 6H $_2$ SO $_4\,_{({\rm копп},)}$ \rightarrow Fe $_2$ (SO $_4$) $_3$ + 3SO $_2$ + 6H $_2$ O, $P + 5HNO_{3(roug)} \rightarrow HPO_{3} + 5NO_{2} + 2H_{2}O;$ \square термическое разложение некоторых оксокислот: $H_2SO_3 \xrightarrow{t^\circ}$ $\xrightarrow{t^{\circ}}$ SO₂ + H₂O; □ термическое разложение некоторых нерастворимых в воде оснований: $Cu(OH)_{2(T)} \xrightarrow{t^{\circ}} CuO + H_{\circ}O;$ \square термическое разложение некоторых солей: $CaCO_{3(r)} \xrightarrow{t^\circ}$ $\xrightarrow{t^{\circ}}$ CaO + CO₀:
- \longrightarrow СаО + СО₂, \square дегидратация оксокислот в присутствии сильного водоотнимающего агента оксида фосфора P_2O_5 : $2HIO_3 \stackrel{t^\circ}{\longrightarrow} I_2O_5 + H_2O_5$.

Химические свойства

- □ Кислотных оксидов:
 - взаимодействие с водой приводит к образованию кислот: $SO_3 + H_2O \rightarrow H_2SO_4$, $N_2O_5 + H_2O \rightarrow 2HNO_3$;
 - взаимодействие с основными оксидами приводит к образованию солей: $3{\rm Na_2O}+{\rm P_2O_5}\to 2{\rm Na_3PO_4},{\rm CaO}+{\rm CO_2}\to {\rm CaCO_3};$
 - взаимодействие со щелочами в водных растворах приводит к образованию солей: $2\text{NaOH} + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}$, $\text{Ba(OH)}_2 + \text{N}_2\text{O}_5 \rightarrow \text{Ba(NO}_3)_2 + 2\text{H}_2\text{O}$;
 - сплавление со щелочами при высоких температурах приводит к образованию солей: $2\text{NaOH} + \text{SiO}_2 \rightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O};$

• реакции замещения кислотного остатка с вытеснением газообразного оксида: $K_2CO_3 + SiO_2 \rightarrow K_2SiO_3 + CO_2$.
□ Основных оксидов:
• взаимодействие с водой приводит к образованию оснований; ${\rm K_2O+H_2O \to 2KOH;}$
• взаимодействие с кислотными оксидами приводит к образованию солей: $3K_2O + P_2O_5 \rightarrow 2K_3PO_4;$
• взаимодействие с кислотами приводит к образованию солей: ${\rm Na_2O+2HCl} \to {\rm 2NaCl+H_2O}.$
□ Амфотерных оксидов:
• взаимодействие с кислотами приводит к образованию солей: ${\rm ZnO} + {\rm 2HNO_3} \rightarrow {\rm Zn(NO_3)_2} + {\rm H_2O};$
• взаимодействие с основаниями приводит к образованию солей: ${\rm ZnO} + 2{\rm KOH} \to {\rm K_2ZnO_2} + {\rm H_2O};$
 взаимодействие с кислотными оксидами при нагревании приводит к образованию солей: ZnO+CO₂ — ^{t°} — ZnCO₃;
• взаимодействие с основными оксидами при нагревании приводит к образованию солей: ${\rm ZnO} + {\rm K_2O} \xrightarrow{\iota^\circ} {\rm K_2ZnO_2}$.
Основания
Основания — сложные вещества, молекулы которых в результате электролитической диссоциации образуют ион металла, либо ион аммония NH_4^+ , и гидроксид-ион OH^- : $\mathrm{Me}(\mathrm{OH})_\mathrm{x} \rightleftarrows \mathrm{Me}^\mathrm{x^+} + \mathrm{xOH}^-$.
Классификация
□ По агрегатному состоянию:
 жидкие (гидроксид аммония NH₄OH);
• твердые (все остальные основания: гидроксид железа(III)

Fe(OH)₃, гидроксид калия КОН, гидроксид кальция

• растворимые, или щелочи (едкий натр NaOH, едкое кали

 $Ca(OH)_2$). \square По растворимости в воде:

KOH, Ba(OH)₂, Ca(OH)₂);

 нерастворимые (гидроксиды магния Mg(OH)₂, меди(II) Cu(OH)₂ и железа(III) Fe(OH)₂).

Получение

- □ Взаимодействие основных оксидов с водой проводит к образованию щелочей: $Na_{*}O + H_{*}O \rightarrow 2NaOH;$
- □ взаимодействие щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов с водой приводит к образованию щелочей: $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$, $\text{Ba} + 2\text{H}_2\text{O} \rightarrow \text{Ba(OH)}_2 + \text{H}_3$;
- □ электролиз водных растворов хлорида натрия NaCl или калия KCl:

$$\begin{array}{c} NaCl \\ \text{катод (-)} \longleftarrow Na^+ + Cl^- \longrightarrow \text{ анод (+)} \\ H_2O & H_2O \\ \\ 2H_2O + 2e^- = H_2 + 2OH^- & 2Cl^- = Cl_2 + 2e^-; \\ \\ 2H_2O + 2NaCl = H_2 + 2NaOH + Cl_2 \end{array}$$

 \square взаимодействие растворимых солей металлов (за исключением щелочных и щелочноземельных) со щелочами: 2NaOH + FeSO₄ \rightarrow Fe(OH)₂ + Na₂SO₄, 2NaOH + CuSO₄ \rightarrow Cu(OH)₂ + Na₂SO₄.

Химические свойства

- Изменение окраски индикатора в растворах щелочей (например, в щелочной среде (рН > 7) лакмус меняет окраску с фиолетового на синий, а бесцветный раствор с добавкой фенолфталеина приобретает малиновую окраску);
- □ взаимодействие с кислотами приводит к образованию солей (реакция нейтрализации): KOH + HCl → KCl + H₂O;
- Взаимодействие с кислотными оксидами приводит к образованию солей: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O;$
- \Box термическое разложение нерастворимых в воде оснований: $\mathrm{Cu}(\mathrm{OH})_{2(r)} \stackrel{t^o}{\longrightarrow} \mathrm{CuO}_{(r)} + \mathrm{H_2O};$

взаимодействие с растворами солей (при условии, что реакция
идет с образованием нерастворимой соли или основания):
$Ba(OH)_{2(p)} + Na_2SO_{4(p)} \rightarrow BaSO_{4(r)} + 2NaOH_{(p)};$
взаимодействие с галогенами (Cl ₂ , Br ₂ , I ₂): 2NaOH + Cl ₂ \rightarrow
\rightarrow NaClO + NaCl + H ₂ O.

Кислоты

Кислоты — сложные вещества, молекулы которых в результате электролитической диссоциации образуют катион водорода H^+ и анион кислотного остатка Ac^- : $HAc \rightleftharpoons H^+ + Ac^-$.

Название кислоты	Формула
Азотная	HNO ₃
Серная	$\mathrm{H_2SO_4}$
Кремниевая	H_2SiO_3
Борная	H_3BO_3
Сероводородная	$\rm H_2S$
Хлороводородная (соляная)	HCl
Йодная	HIO ₄
Йодоводородная	HI
Ортофосфорная	$\mathrm{H_{3}PO_{4}}$
Угольная	H_2CO_3
Бромоводородная	HBr
Фтороводородная (плавиковая)	HF

Классификация

- \square По агрегатному состоянию:
 - жидкие (HNO₃, H₂SO₄);
 - твердые (HIO,, H,BO,);
 - газообразные (HCl, H₂S).
- □ По растворимости в воде:
 - растворимые (большинство кислот: $\mathrm{HNO_3}$, $\mathrm{H_2SO_4}$);
 - нерастворимые (H_2SiO_3) .

	По наличию кислорода:
	• оксокислоты (HNO_3 , H_2SO_4);
	• бескислородные (HCl, $\mathrm{H_2S}$).
	По основности (количеству атомов водорода, способных замещаться):
	 одноосновные (HNO₃);
	• двухосновные (H_2SO_4);
	 трехосновные (H₃PO₄);
	• четырехосновные ($\mathrm{H_4P_2O_6}$).
По	олучение
	Взаимодействие кислотных оксидов с водой: $SO_3 + H_2O \rightarrow H_2SO_4$;
	взаимодействие водорода с такими неметаллами, как фтор F_2 , хлор Cl_2 , бром Br_2 , йод I_2 , сера S и селен S е приводит к образованию бескислородных кислот: $H_2+Br_2\to 2HBr$, $H_2+S\to H_2S$;
	при взаимодействии с некоторыми солями образуются нерастворимые в воде кислоты либо газообразные кислоты: Na $_2$ S + H $_2$ SO $_4$ \rightarrow H $_2$ S + Na $_2$ SO $_4$, 2NaCl + H $_2$ SO $_4$ \rightarrow 2HCl + Na $_2$ SO $_4$, Na $_2$ SiO $_3$ + H $_2$ SO $_4$ \rightarrow H $_2$ SiO $_3$ + Na $_2$ SO $_4$;
	взаимодействие растворимых солей металлов (за исключением щелочных и щелочноземельных) со щелочами: $2NaOH + FeSO_4 \rightarrow Fe(OH)_2 + Na_2SO_4$, $2NaOH + CuSO_4 \rightarrow Cu(OH)_2 + Na_2SO_4$;
	взаимодействие некоторых неметаллов (S, C, P) со сложными веществами-окислителями ($H_2SO_{4(\text{конц.})}$, $HNO_{3(\text{конц.})}$): С + $+2H_2SO_{4(\text{конц.})} \rightarrow 2SO_2 + CO_2 + 2H_2O$ (угольная кислота мгновенно распадается на углекислый газ и воду), S + 6HNO $_{3(\text{конц.})} \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$, P + 5HNO $_{3(\text{конц.})} \rightarrow H_3PO_4 + 5NO_2 + H_2O$.
Χı	имические свойства
	Изменение окраски индикатора в растворах кислот (в кислой среде (pH < 7) лакмус изменяет окраску с фиолетовой на

красную, а бесцветный раствор с фенолфталеином, в отличие

от раствора щелочей, окраску не изменяет);

- □ взаимодействие с основаниями может приводить к образованию как средних, так и кислых или основных солей: $H_3PO_4 + 3KOH \rightarrow K_3PO_4 + 3H_2O$ (образование средней соли ортофосфата калия $K_{\circ}PO_{\bullet}$), $H_{\circ}PO_{\bullet} + 2KOH \rightarrow K_{\circ}HPO_{\bullet} + 2H_{\circ}O$ (образование кислой соли — гидрофосфата калия K₂HPO₄), $HCl + Cu(OH)_2 \rightarrow CuOHCl + H_2O$ (образование основной соли гидроксохлорида меди(II) CuOHCl); □ взаимодействие с основными оксидами приводит к образованию солей: $3H_2SO_4 + Fe_2O_3 \rightarrow Fe_2(SO_4)_3 + H_2O$; □ взаимодействие с амфотерными оксидами приводит к образованию солей: $2HNO_2 + ZnO \rightarrow Zn(NO_2)_2 + H_2O$; 🔲 взаимодействие с амфотерными гидроксидами приводит к образованию солей: $3HCl + Cr(OH)_2 \rightarrow CrCl_2 + 3H_2O$; □ большинство кислот взаимодействуют с металлами, расположенными девее водорода в электрохимическом ряду напряжений (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au), с образованием солей и водорода: $Zn + H_0SO_4 \rightarrow ZnSO_4 + H_0$, $Mg + 2HCl \rightarrow MgCl_0 + H_0$, $Cu + HCl \xrightarrow{}$; □ по-особому реагируют с металлами азотная кислота HNO₂ любой концентрации и концентрированная серная кислота H₂SO₄ (более подробно о химических свойствах этих кислот смотрите в соответствующих разделах):
 - Ni + 4HNO $_3$ \rightarrow Ni(NO $_3$) $_2$ + 2NO $_2$ + 2H $_2$ O (при взаимодействии концентрированной HNO $_3$ с менее активными металлами, находящимися в правой части электрохимического ряда напряжений (Cu, Ag, Au, Hg, Ni), происходит ее восстановление до оксида азота(IV));
 - ${
 m Mg} + 10{
 m HNO}_3 \rightarrow 4{
 m Mg}({
 m NO}_3)_2 + {
 m NH}_4{
 m NO}_3 + 3{
 m H}_2{
 m O}$ (реакция разбавленной ${
 m HNO}_3$ с более активными металлами, находящимися в левой части электрохимического ряда напряжений (до Al), приводит к образованию максимальному восстановлению кислоты, вплоть до нитрата аммония ${
 m NH}_4{
 m NO}_3$);
 - $3{\rm Zn} + 4{\rm H_2SO_4} \rightarrow 3{\rm ZnSO_4} + {\rm S} + 4{\rm H_2O}$ (взаимодействие концентрированной ${\rm H_2SO_4}$ с активными металла приводит к глубокому восстановлению кислоты).

Соли

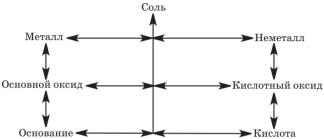
Соли — сложные вещества, молекулы которых в результате электролитической диссоциации в большинстве случаев образуют катион металла Me^{n+} и анион кислотного остатка Ac^{m-} . Такие соли называют $cpe \partial humu$: $Me_m Ac_n \rightleftharpoons m Me^{n+} + n Ac^{m-}$.

Классификация

- □ В зависимости от природы катиона и аниона и сложности их состава выделяют следующие соли:
 - средние: диссоциируют на катион металла и кислотный остаток (сульфат калия K_2SO_4 , нитрат меди(II) $Cu(NO_3)_2$, хлорид серебра AgCl, ортофосфат алюминия $AlPO_4$);
 - кислые: диссоциируют на катион металла и сложный анион, состоящий из одного или нескольких атомов водорода H⁺ и кислотного остатка (гидросульфат калия КНSO₄, гидрофосфат алюминия Al₂(HPO₄)₃, гидрокарбонат кальция Ca(HCO₃)₂);
 - основные: диссоциируют на сложный катион, содержащий атом металла и одну или несколько гидроксильных групп OH^- , и кислотный остаток (например, дигидроксохлорид железа(III) $\mathrm{Fe}(\mathrm{OH})_2\mathrm{Cl}$, гидроксонитрат меди(II) CuOHNO_3 , дигидроксосульфат алюминия $\mathrm{[Al(OH)_2]2SO_4)}$;
 - двойные: диссоциируют на катионы обоих металлов (или катионы металла и аммония) и анион кислотного остатка (сульфат аммония-железа(III) NH₄Fe(SO₄)₂, сульфат калия-алюминия KAl(SO₄)₂);
 - комплексные: диссоциируют на сложные комплексные ионы, в состав которых входят ионы-комплексообразователи d-металлы (Cu⁺, Pt²⁺, Co³⁺, Fe³⁺, Cr³⁺ и др.) и противоположно заряженные ионы или нейтральные молекулы лиганды (H₂O, Cl⁻, CN⁻, NO₂, NH₃ и др.) (гексацианоферрат(III) калия $K_3[Fe(CN)_6]$, гексагидроксоалюминат натрия $Na_3[Al(OH)_6]$, сульфат тетрааммин меди(II) [Cu(NH₃)₄]SO₄);

• смешанные соли: диссоциируют на катион металла и несколько анионов кислотного остатка (например, гидрокарбонат-карбонат натрия, гидросульфат-сульфат алюминия $Na_3CO_3(HCO_3)$, $AlsO_4(HsO_4)$); • кристаллогидраты (медный купорос CuSO₄ · 5H₂O₃ глауберова соль Na₂SO₄ · 10H₂O). □ По растворимости в воде выделяют следующие соли: растворимые (Na₂SO₄, ZnCl₂, Fe(NO₃)₂); малорастворимые (CaSO₄, PbCl₂, Al(CH₂COO)₂); • нерастворимые (BaSO₄, AgCl, ZnCO₃). Получение \square Взаимодействие кислот с основаниями: $Cu(OH)_2 + H_2SO_4 \rightarrow$ $\rightarrow \text{CuSO}_4 + 2\text{H}_2\text{O};$ \square взаимодействие кислотных оксидов с основаниями: Ca(OH) $_{2(n)}$ + $+ CO_{2(r)} \rightarrow CaCO_{3(r)} + H_2O;$ $\hfill \square$ взаимодействие кислот с основными оксидами: CuO + 2HCl \to \rightarrow CuCl₂ + H₂O; □ взаимодействие кислотных оксидов с основными оксидами: $CaO + CO_9 \rightarrow CaCO_3$; 🗆 взаимодействие оснований с растворами солей (при условии, что реакция идет с образованием нерастворимой соли): $Ba(OH)_{2} + Na_{2}SO_{4} \rightarrow BaSO_{4} + 2NaOH;$ 🗆 взаимодействие кислот с растворами солей (при условии, что реакция идет с образованием нерастворимой соли): BaCl₂ + $+ H_2SO_4 \rightarrow BaSO_4 + 2HCl;$ 🗆 взаимодействие двух различных растворов солей (при условии, что реакция идет с образованием нерастворимой соли): BaCl₂ + $+ 2AgNO_3 \rightarrow Ba(NO_3)_2 + 2AgCl;$

□ взаимодействие кислот с металлами: ${\rm Zn} + {\rm H_2SO_4} \to {\rm ZnSO_4} + {\rm H_2}, {\rm Mg} + {\rm 10HNO_3} \to {\rm 4Mg(NO_3)_2} + {\rm NH_4NO_3} + {\rm 3H_2O};$ □ взаимодействие металла с солями менее активных металлов:


 \square взаимодействие металлов с неметаллами: Fe + S $\stackrel{t^{\circ}}{\longrightarrow}$ FeS.

 $\operatorname{Zn} + \operatorname{Cu}(\operatorname{NO}_3)_9 \to \operatorname{Zn}(\operatorname{NO}_3)_9 + \operatorname{Cu};$

X	имические	свойства	

Взаимодействие с металлами: Fe + CuSO $_4$ \to FeSO $_4$ + Cu (более активный металл вытесняет из солей менее активный);
взаимодействие со щелочами (при условии, что реакция идет с образованием нерастворимой соли): $K_2CO_{3(p)}+Ba(OH)_{2(p)}\to BaCO_{3(p)}+2KOH_{(p)}$ (образование нерастворимого карбоната бария $BaCO_3$);
взаимодействие с кислотами (при условии, что реакции идет с образованием нерастворимой соли или более слабой кислоты): $BaCl_{2(p)} + H_2SO_{4(p)} \rightarrow BaSO_{4(r)} + 2HCl_{(p)}, \ Na_2S + \\ + H_2S \rightarrow 2NaHS (при взаимодействие с кислотой, образующей данную соль, получается кислая соль — гидросульфид натрия);$
взаимодействие двух различных растворов солей (при условии, что реакция идет с образованием нерастворимой соли): $AgNO_{3(p)} + NaCl_{(p)} \rightarrow AgCl_{(p)} + NaNO_{3(p)} (происходит выпадение осадка белого цвета — хлорида серебра);$
термические превращения: $MgCO_{3(\tau)} \xrightarrow{t^{\circ}} MgO_{(\tau)} + CO_{2(\tau)}$, $2NaNO_{3(\tau)} \xrightarrow{t^{\circ}} 2NaNO_{2(\tau)} + O_{2(\tau)}$;
взаимодействие основных солей с кислотами приводит к образованию средних солей: CuOHCl + HCl $ ightarrow$ CuCl $_2$ + + H $_2$ O;
взаимодействие кислых солей со щелочами приводит к образованию средних солей: ${\rm NaHSO_3 + NaOH \to Na_2SO_3 + H_2O;}$
гидролиз солей (см. «Общая химия. Растворы»).

Генетическая связь между важнейшими классами неорганических соединений

В пределах одной ветки (металл — основной оксид — основание (либо неметалл) — кислотный оксид — кислота) возможны взаимопревращения. Между элементами двух этих веток также идут химические реакции с образованием одного класса неорганических веществ — солей.

Растворимость некоторых кислот, оснований и солей воде

		Катионы												
		H^+	Na ⁺	Ba^{2+}	Ca ²⁺	Mg^{2+}	Al^{3+}	Cr^{3+}	Fe^{2+}	$\mathrm{Fe^{3+}}$	Zn^{2+}	Ag^+	Pb^{2+}	Cu^{2+}
	OH^-		P	P	M	Н	Н	Н	Н	Н	Н	_	Н	Н
	Cl-	P	P	P	P	P	P	P	P	P	P	Н	M	P
	Br-	P	P	P	P	P	P	P	P	P	P	Н	M	P
₽	S^{2-}	P	P	P	P	P	_	_	Н	_	Н	Н	Н	Н
Анионы	SO_4^{2-}	P	P	Н	M	P	P	P	P	P	P	M	Н	P
Ā	PO_{4}^{3-}	P	P	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	CO_3^{2-}	P	P	Н	Н	Н	_	_	Н	_	Н	Н	Н	_
	SiO_3^{2-}	Н	P	Н	Н	Н	Н	_	Н	Н	Н	_	Н	Н
	NO_3^-	P	P	P	P	P	P	P	P	P	P	P	P	P

Примечание. Р (растворяется); Н (не растворяется); М (мало растворяется); — (не существует либо разлагается в воде).

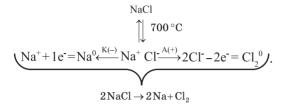
Металлы главных подгрупп и их соединения

Щелочные металлы (ІА-группа)

Представители

Литий Li (II период), натрий Na (III период), калий K (IV период), рубидий Rb (V период), цезий Cs (VI период), франций Fr (VII период).

Важнейшие природные соединения


Поваренная соль NaCl, сильвинит NaCl · KCl, глауберова соль Na $_2 SO_4 \cdot 10 H_2 O$.

Физические свойства

- □ Металлы серебристо-белого цвета, хорошо проводят электрический ток. Сверху вниз по группе отмечаются следующие закономерности:
 - плотность металлов увеличивается ($\rho(Li) = 0,534 \text{ г/см}^3$, $\rho(Cs) = 1,87\text{г/см}^3$);
 - температуры плавления уменьшаются (t_{nn} (Li) = 180 °C, t_{nn} (Cs) = 29 °C);
 - температуры кипения уменьшаются ($t_{\text{кип.}}(\text{Li}) = 1350$ °C, $t_{\text{кип.}}(\text{Cs}) = 670$ °C);
 - радиусы атомов элементов увеличиваются (r(Li) = 155 пм, r(K) = 238 пм, r(Fr) = 280 пм);
 - металлические свойства возрастают (способность отдавать единственный электрон с внешнего слоя увеличивается).

Получение

Электролиз расплава щелочей либо солей соответствующих шелочных металлов:

Химические свойства

- □ Взаимодействие с кислородом приводит к образованию смеси пероксида и оксида металла: $2\mathrm{Na} + \mathrm{O_2} \rightarrow \mathrm{Na_2O_2}$ (пероксид натрия основной продукт реакции), $2\mathrm{Na} + \mathrm{O_2} \rightarrow 2\mathrm{Na_2O}$ (оксид натрия побочный продукт реакции, образуется в следовых количествах);
- взаимодействие с водородом приводит к образованию гидридов металлов: $2K + H_2 \xrightarrow{t^2} 2KH;$
- Взаимодействие с серой приводит к образованию сульфидов металлов: $2K + S \rightarrow K_{\circ}S$;
- □ взаимодействие с галогенами приводит к образованию галогенидов (фторидов, хлоридов, бромидов, иодидов) металлов: $2Na + Br_2 \rightarrow 2NaBr$;
- □ реакция с водой проходит с образованием щелочей и выделением водорода: $2Na + 2H_2O \rightarrow 2NaOH + H_2$;
- □ реакция с кислотами проходит с образованием солей и выделением водорода: $2K + 2HCl \rightarrow 2KCl + H_2$;
- $\ \square$ взаимодействие с галогеналками реакция Вюрца (см. «Органическая химия», тема «Алканы»): 2Na + 2CH₂Cl → $\ \rightarrow C_2H_6+2NaCl.$

Соединения щелочных металлов

- □ Оксиды (общая формула Me₂O) твердые вещества белого цвета; обладают всеми свойствами основных оксидов:
 - взаимодействуют с водой: $K_2O + H_2O \rightarrow 2KOH$;

- взаимодействуют с кислотными оксидами: $3K_2O + P_2O_5 \rightarrow 2K_3PO_4$;
- взаимодействуют с кислотами: $Na_2O + 2HCl \rightarrow 2NaCl + H_2O$.
- □ Гидроксиды (общая формула МеОН) твердые вещества белого пвета; обладают всеми свойствами щелочей:
 - взаимодействуют с кислотами: NaOH + HCl \rightarrow NaCl + H₂O;
 - взаимодействуют с кислотными оксидами: 2NaOH + CO $_2$ \to Na $_2$ CO $_3$ + H $_2$ O;
 - взаимодействуют с галогенами: 2NaOH + $\mathrm{Cl_2} \! \to \! \mathrm{NaClO} + + \mathrm{NaCl} + \mathrm{H_2O}$.
- □ Соли (общая формула Me_nAc) твердые вещества исключительно ионного строения, большинство солей щелочных металлов хорошо растворимы воде, исключение составляют некоторые соли лития, например Li_3PO_4 ; соли щелочных металлов, образованные слабыми кислотами, способны гидролизоваться: $Na_2CO_3+H_2O$ \longrightarrow $NaHCO_3+NaOH$.
- \Box $\Gamma u \partial p u \partial \omega$ твердые вещества белого цвета, обладают следующими свойствами:
 - взаимодействуют с водой: NaH + ${\rm H_2O} \rightarrow {\rm NaOH} + {\rm H_2};$
 - при нагревании разлагаются на металл и водород (за исключением гидрида лития): $NaH \xrightarrow{t^o} 2N + H_o$.

Применение

Соединения калия К используют в качестве удобрений; в медицинской практике применяется 0.9%-ный раствор хлорида натрия NaCl (физиологический раствор) и глауберова соль Na₂SO₄ · 10H₂O (слабительное средство).

Щелочноземельные металлы (IIA-группа)

Представители

Бериллий Ве (II период), магний Mg (III период), кальций Са (IV период), стронций Sr (V период), барий Ва (VI период), радий Ra (VII период).

Важнейшие природные соединения

Мел, кальцит, мрамор $CaCO_3$, барит $BaSO_4$, гипс $CaSO_4 \cdot 2H2O$, фосфорит $Ca_3(PO_4)_2$, стронцианит $SrCO_3$, доломит $CaCO_3 \cdot MgCO_3$, магнезит $MgCO_3$.

Физические свойства

Металлы серебристо-белого цвета, хорошо проводят электрический ток. Сверху вниз по группе отмечаются следующие закономерности:

- \square плотность металлов увеличивается ($\rho(Be) = 1,85 \text{ г/см}^3$, $\rho(Ba) = 3.50 \text{ г/см}^3$);
- \Box температура плавления уменьшается ($t_{\rm пл.}({\rm Be})=1283~{\rm ^{\circ}C},$ $t_{\rm пл.}({\rm Ba})=710~{\rm ^{\circ}C}).$

Получение

□ Электролиз расплава солей соответствующих металлов:

$$Ca^{2+} + 2e^{-} = Ca^{0} \stackrel{K(-)}{\longleftrightarrow} Ca^{+} Cl^{-} \xrightarrow{A(+)} 2Cl^{-} - 2e^{-} = Cl_{2}^{0}$$

$$CaCl_{2} \rightarrow Ca + Cl_{2}$$

CaCl₂

 \square алюмотермический метод (в случае стронция Sr и бария Ba): 4SrO+2Al $^{-t^\circ}$ \rightarrow 3Sr+SrO+Al $_2$ O $_3$.

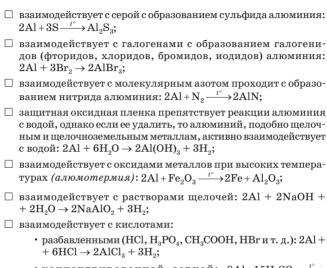
Химические свойства

□ Щелочноземельные металлы проявляют такую же активность, как и щелочные; бериллий — мало активный металл (не реагирует водой (водяным паром) и водородом, образует галогениды, оксиды и сульфиды при температуре выше 600 °C);

	взаимодействие с водородом приводит к образованию гидридов
	металлов: $Ca + H_2 \xrightarrow{t^{\circ}} CaH_2$;
	взаимодействие с серой приводит к образованию сульфидов
	металлов: $Ca + S \xrightarrow{t^o} CaS;$
	взаимодействие с галогенами приводит к образованию галогенидов (фторидов, хлоридов, бромидов, иодидов) металлов: ${\rm Ca} + {\rm Br}_2 \to {\rm CaBr}_2;$
	реакция с водой проходит с образованием щелочей и выделением водорода: Ca + $2\mathrm{H}_2\mathrm{O} o \mathrm{Ca}(\mathrm{OH})_2 + \mathrm{H}_2$;
	реакция с кислотами проходит с образованием солей и выделением водорода: Ca $+$ 2HCl \rightarrow CaCl $_2+$ H $_2;$
	бериллий, в отличие от щелочноземельных металлов, реагирует с водным раствором щелочи: Be + 2NaOH + 2H2O \to Na2[Be(OH)4] + H2.
Co	единения щелочноземельных металлов
	$O\kappa cu\partial \omega$ (общая формула — MeO) — твердые вещества белого цвета, обладают свойствами основных оксидов:
	• взаимодействуют с водой: CaO + ${\rm H_2O} \rightarrow {\rm Ca(OH)_2},~{\rm BeO} + {\rm + H_2O} \rightarrow {\rm Be(OH)_2};$
	• взаимодействуют с кислотными оксидами: CaO + CO $_2$ \rightarrow CaCO $_3$;
	• взаимодействуют с кислотами: CaO + 2HCl $ ightarrow$ CaCl $_2$ + H $_2$ O;
	• взаимодействуют со щелочами (амфотерные свойства про-
	являет только бериллий): BeO + 2NaOH $\stackrel{t^\circ}{\longrightarrow}$ Na $_2$ BeO $_2$ + + H $_2$ O.
	$\Gamma u \partial p o \kappa c u \partial \omega$ (общая формула — $Me(OH)_2$) — твердые вещества

белого цвета, обладают всеми свойствами оснований:

 \square взаимодействие с кислородом приводит к образованию смеси пероксида и оксида металла: 2Ca + O2 \to 2CaO (оксид кальция — основной продукт реакции), Ca + O2 \to CaO2 (пероксид


кальция — побочный продукт реакции);

- взаимодействуют с кислотами: Ca(OH) $_2+2HCl \rightarrow CaCl_2+2H_2O;$
- взаимодействуют с кислотными оксидами: Ca(OH) $_2$ + $_2$ CaCO $_3$ + $_3$ H $_2$ O;
- взаимодействуют со щелочами (амфотерные свойства проявляет *только* бериллий): $Be(OH)_2 + 2NaOH \rightarrow Na_2Be(OH)_4$.
- реакция разложения (легче всего дегидратируется гидроксид бериллия (при T=130 °C), тяжелее гидроксид бария (при T=1000 °C)): $Be(OH)_2 \rightarrow BeO + H_2O$.
- \square Соли (общая формула Me_u(Ac)_u):
 - хлориды, бромиды и нитраты щелочноземельных металлов хорошо растворимы воде, фосфаты, карбонаты и сульфаты малорастворимы либо практически не растворимы в воде;
 - соли щелочноземельных металлов, образованные слабыми кислотами, если они растворимы, подвергаются гидролизу: 2BaS + 2H₂O \rightarrow Ba(HS)₂ + Ba(OH)₂;
 - гидрокарбонаты магния и кальция (Ca(HCO $_3$) $_2$, Mg(HCO $_3$) $_2$) определяют временную жесткость воды, их сульфаты (CaSO $_4$, MgSO $_4$, реже хлориды CaCl $_2$, MgCl $_2$) постоянную жесткость воды;
 - общая жесткость воды складывается из двух составляющих: временной и постоянной жесткости; математическое выражение общей жесткости: $\mathcal{H}_{\text{обш},} = \frac{c_{\text{Ca}^{2+}}}{20,04} + \frac{c_{\text{Mg}^{2+}}}{12,16}$, где $c_{\text{Ca}^{2+}}, c_{\text{Mg}^{2+}}$ концентрации ионов Ca^{2+} и Mg^{2+} , мг/л.

Применение

 \square Соединения магния Mg: медицина (английская соль MgSO₄ × 4 X 4 X 2 2 2 в качестве слабительного средства, оксид магния MgO нейтрализует действие кислот, гидроксид-карбонат магния MgOH 4 3MgCO $_{3}$ 4 3H $_{2}$ O 2 в качестве присыпки);

□ соединения бериллия Ве: аэрокосмическая промышленность (гидрид бериллия ВеН₂ — в качестве ракетного топлива), ядерной энергетике, горнодобывающей промышленности (мощнейшее взрывчатое вещество — оксиликвит, представляющее собой смесь бериллия и жидкого озона О₃); металлический бериллий используют для легирования сплавов, материалы на основе оксида бериллия ВеО проявляют улучшенные огнеупорные свойства;
\square соединения кальция Ca: медицина (гипс $\mathrm{CaSO_4} \cdot \mathrm{2H_2O}$);
\square соединения бария Ва: электротехника (титанат бария Ва ${ m TiO_3}$ — электротехнический материал), медицина (сульфат бария ${ m BaSO_4}$ — для диагностики заболеваний желудочно-кишечного тракта).
Алюминий (IIIA-группа, III период)
Важнейшие природные соединения
Алюмосиликаты Na $_2$ O · Al $_2$ O $_3$ · 2SiO $_2$ и K $_2$ O · Al $_2$ O $_3$ · 2SiO $_2$; бокситы Al $_2$ O $_3$ · n H $_2$ O; криолит Na $_3$ [AlF $_6$]; корунд Al $_2$ O $_3$.
Физические свойства
Легкий пластичный металл серебристо-белого цвета, хорошо проводит электрический ток, $t_{\scriptscriptstyle \rm ILR}=660~{\rm ^{\circ}C}.$
Получение
Электролиз оксида алюминия Al_2O_3 в расплаве криолита $Na_3[AlF_6]$: $2Al_2O_3 - \frac{950^{\circ}C, Na_3[AlF_6]}{2} + 4Al + 3O_2$.
Химические свойства
$\ \square$ Реакция горения, а также стадия образования тонкой защитной пленки оксида алюминия на фрагменте металлического алюминия: $4Al+3O_2\to 2Al_2O_3;$
\Box взаимодействует с углеродом при высоких температурах с образованием карбида алюминия: 4Al + 3C $\xrightarrow{\iota^\circ}$ Al $_4$ C3;

- * концентрированной серной: $8Al+15H_2SO_4$ t° \rightarrow $4Al_2(SO_4)_3+3H_2S+12H_2O$ (реакция идет только при нагревании, на холоде алюминий не реагирует с кислотой,
- разбавленной азотной: $Al + 4HNO_3 \rightarrow Al(NO_3)_3 + NO + 2H_3O;$
- концентрированной азотной: $Al + HNO_3 \longrightarrow$ (реакция не идет ни при каких условиях (алюминий пассивируется кислотой), в связи с этим концентрированную азотную кислоту хранят в алюминиевых емкостях).

Соединения алюминия

то есть пассивируется ею);

 \square Оксид (Al₂O₃) — твердое вещество белого цвета, не растворяется в воде, обладает свойствами амфотерных оксидов:

- взаимодействует с кислотами: $Al_2O_3 + 3H_2SO_{4(pas6.)} \rightarrow Al_2(SO_4)_3 + 3H_2O;$
- взаимодействует с основаниями: ${\rm Al_2O_3} + {\rm 2KOH} \rightarrow {\rm 2KAlO_2} + {\rm H_2O}$.
- \square $\Gamma u \partial p o \kappa c u \partial$ (Al(OH)₃) твердое вещество белого цвета, не растворяется в воде, обладает свойствами амфотерных гидроксидов:
 - взаимодействует с кислотами: $Al(OH)_3 + 3HCl \rightarrow AlCl_3 + 3H_3O;$
 - взаимодействует с основаниями: $Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$ (образуется комплексное соединение тетрагидроксоалюминат калия);
 - реакция термического разложения: $2Al(OH)_3 \xrightarrow{t^\circ} Al_0O_3 + H_0O$.

Применение

Машиностроение, авиастроение, быт (изготовление посуды), медицина (ацетат алюминия $Al(CH_3COO)_3$ — для лечения кожных заболеваний), очистка воды (гидратированный сульфат алюминия $Al_2(SO_4)_3 \cdot 18H_2O$), различные отрасли промышленности и науки $(Al_2O_3$ — адсорбент в хроматографии).

Металлы побочных подгрупп и их соединения

Железо (VIIIB-группа, IV период)

Важнейшие природные соединения

Бурый железняк ${\rm Fe_2O_3\cdot 3H_2O}$, красный железняк ${\rm Fe_2O_3}$, пирит ${\rm FeS_9}$, магнитный железняк ${\rm Fe_3O_4}$.

Физические свойства

Пластичный металл серебристого цвета, хорошо проводящий электрический ток и обладающий магнитными свойствами, $t_{\rm n...}=1539~{\rm C}.$

Получение

Πı	ромышленный метод (доменный процесс) включает стадии:
	получение оксида углерода(IV) из кокса: $C + O_2 \xrightarrow{t^\circ} CO_2$;
	получение оксида углерода(II) — главного восстанавливающего агента всего процесса: $CO_2 + C \xrightarrow{t^\circ} \rightarrow 2CO$, $3Fe_2O_3 + CO \xrightarrow{500^\circ C} \rightarrow 2Fe_3O_4 + CO_2$, $3Fe_2O_3 + CO \xrightarrow{600^\circ C} \rightarrow 3FeO + CO_2$, $FeO + CO \xrightarrow{700^\circ C} \rightarrow Fe + CO_2$.
Χı	имические свойства
	Проявляет степени окисления +2, +3, +6;
	взаимодействует с кислородом при высоких температурах с образованием смеси оксидов (II) и (III): $3 Fe + 2O_2 \xrightarrow{t^o} Fe_3O_4 (FeO \cdot Fe_2O_3)$;
	в присутствии следов воды железо на воздухе медленно коррозирует даже при обычной температуре: 4Fe + $3O_2$ + $+6H_2O \rightarrow 4$ Fe(OH) $_3$;
	взаимодействует с углеродом при высоких температурах с образованием карбида железа (цементита): $3 Fe + C \xrightarrow{t^c} Fe_3 C;$
	взаимодействует с серой при высоких температурах с образованием сульфида железа(II): Fe+S $\xrightarrow{t^\circ}$ FeS;

	взаимодействует с галогенами при высоких температурах с образованием галогенидов (фторидов, хлоридов, бромидов,
	иодидов) железа(III): 2Fe + 3Br ₂ $\xrightarrow{t^\circ}$ 2FeBr ₃ ;
	взаимодействует с кремнием и фосфором при высоких температурах с образованием силицида и фосфида железа соответственно: $3Fe+Si \xrightarrow{t^\circ} Fe_3Si$, $3Fe+2P \xrightarrow{t^\circ} Fe_3P_2$;
	железо — металл средней активности, взаимодействует с водой только будучи раскаленным: 3Fe + $4H_2O \rightarrow Fe_3O_4 + 4H_2$;
	сплавление с едким натром или едким кали в присутствии нитрата натрия или калия соответственно идет с образованием ферратов: Fe+3NaNO $_3$ +2NaOH— $^{t^\circ}$ \rightarrow Na $_2$ FeO $_4$ +5+3NaNO $_2$ +H $_2$ O;
	замещает менее активные металлы из растворов их солей: Fe + $\mathrm{CuSO_4} \rightarrow \mathrm{FeSO_4} + \mathrm{Cu};$
	взаимодействует с кислотами:
	• разбавленными (HCl, $\rm H_3PO_4$, CH $_3$ COOH, HBr, $\rm H_2SO_4$ и т. д.) с образованием солей железа(II): Fe + 2HCl \rightarrow FeCl $_2$ + $\rm H_2$;
	• концентрированной серной с образованием сульфата железа(III): $Fe+6H_2SO_4 \xrightarrow{t^\circ} Fe_2(SO_4)_3+3SO_2+6H_2O$ (реакция идет только при нагревании, на холоде железо не реагирует с кислотой, пассивируется ею);
	• разбавленной азотной: Fe + 4HNO $_3 \rightarrow$ Fe(NO $_3)_3$ + NO + + 2H $_2$ O;
	• концентрированной азотной: $Fe+HNO_3 \longrightarrow$ (реакция не идет ни при каких условиях (железо, подобно алюминию, пассивируется кислотой).
Co	единения железа(II)

□ Оксид (FeO) — твердое вещество черного цвета, не растворяется в воде, обладает свойствами основных оксидов и взаимодействует с кислотами и кислотными оксидами:

 $\text{FeO} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2\text{O.}$

- □ Гидроксид (Fe(OH)₂) твердое вещество белого цвета, не растворяется в воде, обладает свойствами оснований, проявляет слабые восстановительные свойства:
 - взаимодействует с кислотами: Fe(OH)2 + 2HCl \rightarrow FeCl₂ + + 2H₂O;
 - взаимодействует с кислотами и кислотными оксидами: $Fe(OH)_{\circ} + 2HCl \rightarrow FeCl_{\circ} + 2H_{\circ}O;$
 - реакция окисления свежеполученного гидроксида железа(II) $\text{Fe}(\text{OH})_2$ на воздухе проходит с образованием бурого вещества гидроксида железа(III) $\text{Fe}(\text{OH})_3$: $4\text{Fe}(\text{OH})_2 + O_2 + 2\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3$;
 - реакция термического разложения: Fe(OH) $_2$ $\xrightarrow{t^\circ}$ FeO+ + $_2$ O.
- □ Conu ($Fe_n(Ac)_2$) проявляют слабые восстановительные свойства:
 - обесцвечивают раствор перманганата калия KMnO₄: $10 {\rm FeSO_4} + 2 {\rm KMnO_4} + 8 {\rm H_2SO_4} \rightarrow 5 {\rm Fe_2(SO_4)_3} + 2 {\rm MnSO_4} + + {\rm K_2SO_4} + 8 {\rm H_2O};$
 - обесцвечивают бромную воду: 2FeSO $_4$ + Br $_2$ + H $_2$ SO $_4$ \to Fe $_2$ (SO $_4$) $_3$ + 2HBr;
 - качественная реакция на соли железа(II): $3 \operatorname{FeCl}_2 + 2 \operatorname{K}_3[\operatorname{Fe}(\operatorname{CN})_6] \rightarrow \operatorname{Fe}_3[\operatorname{Fe}(\operatorname{CN})_6]_2 + 6 \operatorname{KCl}$ (при взаимодействии солей железа(II) с красной кровяной солью $\operatorname{K}_3[\operatorname{Fe}(\operatorname{CN})_6]$ образуется осадок темно-синего цвета $\operatorname{Fe}_3[\operatorname{Fe}(\operatorname{CN})_6]_2 \operatorname{myph булевая} \operatorname{cuhb}$).

Соединения железа(III)

- \square Оксид (Fe₂O₃) твердое вещество бурого цвета, не растворяется в воде, обладает свойствами амфотерных оксидов:
 - взаимодействует с кислотами: Fe $_2\mathrm{O}_3+6\mathrm{HCl}\to 2\mathrm{FeCl}_3++3\mathrm{H}_2\mathrm{O};$
 - взаимодействует со щелочами (сплавление): $Fe_2O_3 + 2KOH \xrightarrow{t^\circ} 2KFeO_2 + H_2O$ (образование феррита калия $KFeO_2$).

- □ Гидроксид (Fe(OH)₃) твердое вещество бурого цвета, не растворяется в воде, обладает амфотерными свойствами:
 - взаимодействует с кислотами: Fe(OH) $_3$ + 3HCl \rightarrow FeCl $_3$ + 3H $_2$ O;
 - взаимодействует со щелочами (только при длительном нагревании; в зависимости от количества щелочи получают гидроксокомплексы с координационным числом4или6): Fe(OH)₃ + NaOH—^{t°}→Na[Fe(OH)₄], Fe(OH)₃ + 3NaOH—^{t°}→Na₃[Fe(OH)₆].
- \Box *Соли* (Fe₂(Ac)₃) проявляют слабые окислительные свойства:
 - реакция окисления иодида натрия NaI хлоридом железа FeCl $_3$: 2FeCl $_3$ + 2NaI \rightarrow 2FeCl $_2$ + 2NaCl + I $_2$;
 - качественные реакции на соли железа(III): $4 \text{FeCl}_3 + + 3 \text{K}_3 [\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4 [\text{Fe}(\text{CN})_6]_3 + 12 \text{KCI}$ (при взаимодействии солей железа(III) с желтой кровяной солью $\text{K}_4 [\text{Fe}(\text{CN})_6]$ образуется осадок темно-синего цвета $\text{Fe}_4 [\text{Fe}(\text{CN})_6]_3 6 e p$ линская лазурь); $\text{FeCl}_3 + 3 \text{NH}_4 \text{CNS} \rightarrow \text{Fe}(\text{CNS})_3 + 3 \text{NH}_4 \text{CI}$ (при взаимодействие солей железа(III) с роданидом аммония $\text{NH}_4 \text{CNS}$ образуется осадок темно-красного цвета $\text{Fe}(\text{CNS})_3 po∂$ ани ∂ железа(III)).

Применение

Все отрасли промышленности (сплавы железа — чугун и сталь — конструктивный материал); очистка воды, катализатор в органической химии (хлорид железа FeCl_3); текстильная промышленность (гидратированный нитрат железа $\operatorname{Fe}(\operatorname{NO}_3)_3 \cdot 9\operatorname{H}_2O$).

Хром (VIB-группа, IV период)

Важнейшее природное соединение

Хромистый железняк $FeO \cdot Cr_2O_3$.

Физические свойства

Очень твердый металл серебристо-белого цвета, $t_{\rm nn}=1890~{}^{\circ}{\rm C}$.

По	лучение
	Алюминотермия: $\text{Cr}_2\text{O}_3 + 2\text{Al} \xrightarrow{t^\circ} 2\text{Cr} + \text{Al}_2\text{O}_3$ (восстановление оксида хрома(III) алюминием);
	электролиз раствора солей хрома: $2\mathrm{Cr_2(SO_4)_3}+6\mathrm{H_2O} \to 4\mathrm{Cr}+6\mathrm{H_2SO_4}+3\mathrm{O_2}$ (общее уравнение электролиза раствора сульфата хрома(III)).
$\mathbf{X}_{\mathbf{I}}$	имические свойства
	В химических соединениях проявляет степени окисления $+2, +3, +6$ (поверхность хрома, подобно алюминию, покрыта защитной оксидной пленкой, поэтому в обычных условиях хром — химически неактивный металл);
	взаимодействует с кислородом при высоких температурах с образованием оксида хрома(III): $4\mathrm{Cr}+3\mathrm{O}_2$ — t° — $2\mathrm{Cr}_2\mathrm{O}_3$;
	взаимодействует с углеродом при высоких температурах с образованием карбида хрома(III): $4\mathrm{Cr}+3\mathrm{C} \xrightarrow{t^o} \mathrm{Cr}_4\mathrm{C}_3$;
	взаимодействует с серой при высоких температурах с образованием сульфида хрома(III): $2Cr+3S \xrightarrow{t^o} Cr_2S_3$;
	взаимодействует с галогенами при высоких температурах с образованием галогенидов (фторидов, хлоридов, бромидов, иодидов) хрома(III): $2\mathrm{Cr} + 3\mathrm{Cl}_2 \xrightarrow{t^o} 2\mathrm{Cr} \mathrm{Cl}_3$;
	взаимодействует с азотом при высоких температурах с образованием нитрида хрома(III): $2Cr + N_2 \xrightarrow{t^*} CrN;$
	взаимодействует с кремнием при высоких температурах с образованием силицида хрома(III): $4Cr + 3Si - \frac{t^{\circ}}{2} + Cr_4Si_3$;
	при очень высоких температурах вступает в реакцию с водой с образованием оксида хрома(III): 2Cr + 3H $_2$ O — $^{t^\circ}$ → Cr $_2$ O $_3$ + 3H $_2$;
	взаимодействует с кислотами:
	• разбавленными (HCl, H $_3$ PO $_4$, CH $_3$ COOH, HBr, H $_2$ SO $_4$ и т. д.) с образованием солей хрома(II): Cr + 2HCl \to CrCl $_2$ + H $_2$;
	• концентрированными серной, а также азотной: Cr + $+6\text{H}_2\text{SO}_4 \xrightarrow{t^\circ} \text{Cr}_2(\text{SO}_4)_3 + 3\text{SO}_2 + 6\text{H}_2\text{O}, \text{Cr} + 6\text{HNO}_3 \xrightarrow{t^\circ}$

 $\stackrel{t^{\circ}}{\sim} {\rm Cr(NO_3)_3} + 3{\rm NO_2} + 3{\rm H_2O}$ (реакция идет только при нагревании с образованием сульфата и нитрата хрома(III) соответственно, на холоде хром пассивируется данными кислотами).

Соединения хрома(II)

- □ $O\kappa cu\partial$ (CrO) обладает свойствами основных оксидов (взаимодействует с кислотами): CrO + 2HCl \rightarrow CrCl₂ + H₂O.
- □ $\Gamma u \partial p o \kappa c u \partial$ $(Cr(OH)_2)$ обладает свойствами оснований (взаимодействует с кислотами, кислотными оксидами): $Cr(OH)_2 + 2HCl \rightarrow CrCl_2 + 2H_2O$; проявляет сильные восстановительные свойства: $4Cr(OH)_2 + O_2 + 2H_2O \rightarrow 4Cr(OH)_2$.
- □ Соли проявляют сильные восстановительные свойства, окисляясь в наиболее устойчивую форму со степенью окисления +3: 4CrCl $_2$ + 4HCl + O $_2$ \to 4CrCl $_3$ + 2H $_2$ O (окисление хлорида хрома(II) молекулярным кислородом).

Соединения хрома(III)

- \square Оксид ($\mathrm{Cr_2O_3}$) твердое вещество зеленого цвета, не растворяется в воде, обладает свойствами амфотерных оксидов:
 - взаимодействует с кислотами: ${\rm Cr_2O_3} + {\rm 6HCl} \rightarrow {\rm 2CrCl_3} + {\rm +3H_2O};$
 - взаимодействует со щелочами (сплавление): ${\rm Cr_2O_3} + {\rm +2KOH} \xrightarrow{t^\circ} {\rm 2KCrO_2} + {\rm H_2O}$ (образование метахромита калия ${\rm KCrO_2}$);
 - взаимодействует с карбонатами щелочных металлов (сплавление): $\text{Cr}_2\text{O}_3 + \text{K}_2\text{CO}_3 \xrightarrow{t^2} 2\text{KCrO}_2 + \text{CO}_2$ (образование метахромита калия KCrO_3).
- \square $\Gamma u \partial p o \kappa c u \partial$ (Cr(OH)₃) твердое вещество серо-зеленого цвета, не растворяется в воде, обладает амфотерными свойствами:
 - взаимодействует с кислотами: $Cr(OH)_3 + 3HCl \rightarrow CrCl_2 + 3H_2O;$

• взаимодействует с избытком щелочи: $Cr(OH)_3 + 3KOH \rightarrow K_3[Cr(OH)_6]$ (образуются гидроксокомплексы с координационным числом, равным 6 — гексагидроксохромиты щелочных металлов).

Соединения хрома(VI)

- \square Оксид (CrO $_3$) твердое вещество красного цвета, растворяется в воде, обладает кислотными свойствами:
 - взаимодействует с основаниями: $CrO_3 + 2NaOH \rightarrow Na_2CrO_4 + H_2O$ (получение хромата натрия Na_2CrO_4);
 - при растворении в избытке воды образуется хромовая кислота H_2CrO_4 $CrO_3+H_2O\to H_2CrO_4$ •;
 - при растворении в недостатке воды образуется дихромовая кислота $H_2Cr_2O_7$: $2CrO_3 + H_2O \rightarrow H_2Cr_2O_7$.
- $\hfill \ \Gamma u \partial p o \kappa c u \partial \omega$: хромовая $\hfill \ H_2 CrO_4$ и дихромовая $\hfill \ H_2 Cr_2 O_7$ кислоты могут существовать только в водных растворах.
- \square Соли: соли хромовой кислоты (хроматы) имеют желтую окраску, соли дихромовой кислоты (дихроматы) оранжевую (раствор дихромата калия $K_2Cr_2O_7$ в концентрированной серной кислоте хромовая смесь):
 - при подкислении хроматов образуются дихроматы: $2K_2GrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O;$
 - в щелочной среде дихроматы переходят в хроматы: $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O;$
 - проявляют сильные окислительные свойства как в кислой, так и в щелочной средах: $K_2Cr_2O_7+3H_2S+4H_2SO_4\to Cr_2(SO_4)_3+3S+K_2SO_4+7H_2O$ (реакция окисления сероводорода до серы в кислой среде, оранжевая окраска раствора исчезает), $2K_2CrO_4+3K_2S+8H_2O\to 2K_3[Cr(OH)_6]+3S+4KOH$ (реакция окисления сульфида калия до серы в щелочной среде, желтая окраска раствора исчезает).

Применение

Промышленность (хром Cr — специальная добавка для получения нержавеющих сортов стали и гальванических покры-

тий, устойчивых к коррозии — процесс хромирования), для очистки стеклянной лабораторной посуды (хромовая смесь $K_2Cr_2O_7 + H_2SO_4$).

Медь (ІВ-группа, IV период)

Важнейшие природные соединения

Медный колчедан $CuFeS_2$, малахит $Cu_2CO_3(OH)_2$, куприт Cu_2O , ковеллин CuS.

Физические свойства

Мягкий металл красного цвета, хорошо проводит электрический ток и теплоту (по этому показателю уступает только серебру), $t_{\rm nr}=10~845~{\rm ^{\circ}C}$.

□ Пирометаллургический метод (из медного колчедана, ковел-

**				
	олу	THE	HII	0

	лина): $2\text{CuFeS}_2 + 5\text{O}_2 + 2\text{SiO}_2 \rightarrow 2\text{Cu} + 2\text{FeSiO}_3 + 4\text{SO}_4$;		
	гидрометаллургический метод (растворение медных руд в серной кислоте с последующим вытеснением из раствора более активным металлом): $\text{CuSO}_4 + \text{Fe} \to \text{FeSO}_4 + \text{Cu};$		
	электролиз раствора солей меди: $2\text{CuSO}_4 + 2\text{H}_2\text{O} \to 2\text{Cu} + \text{O}_2 + 2\text{H}_2\text{SO}_4$ (общее уравнение электролиза раствора сульфата меди(II)).		
Xı	Химические свойства		
	В химических соединениях проявляет степени окисления $+1$ и $+2$ (в обычных условиях — химически неактивный металл), обладает слабыми восстановительными свойствами, склонен к комплексообразованию;		
	взаимодействует с недостатком кислорода (при $t=200$ °C) с образованием оксида меди(I): $4\mathrm{Cu}+\mathrm{O_2} \xrightarrow{t^\circ} 2\mathrm{Cu_2O}$;		
	взаимодействует с избытком кислорода (при $t=500$ °C) с образованием оксида меди(II): 2Cu + O2		
	взаимодействует с серой при высоких температурах с образованием сульфида меди(I): $2Cu+S \xrightarrow{t^o} Cu_oS$;		

- □ взаимодействует с серой в среде жидкого сероуглерода CS₀ при обычных условиях с образованием сульфида меди(II): $Cu + S \rightarrow CuS$: 🗆 взаимодействует с хлором (в сероуглероде) и бромом (в эфире) при обычных условиях с образованием хлорида и бромида меди(II) соответственно: $Cu + Cl_2 \rightarrow CuCl_2$, $Cu + Br_2 \rightarrow$ → CuBr₂; □ взаимодействует с оксидом серы(IV) при высоких температурах с образованием сульфида меди(I) и оксида меди(II): $4\text{Cu} + \text{SO}_2 \xrightarrow{t^\circ} \text{Cu}_2 \text{S} + 2\text{CuO};$ □ взаимодействует с оксидом азота(IV) при высоких температурах с образованием оксида меди(II) и молекулярного азота: $4\text{Cu} + 2\text{NO}_2 \xrightarrow{t^\circ} 4\text{CuO} + \text{N}_2$; □ взаимодействует с кислотами: разбавленными (HCl, H₂SO₄ и т. д.) только в присутствии кислорода с образованием солей меди(II): 2Cu + 4HCl + $+ O_0 \rightarrow 2CuCl_0 + 2H_0O;$ • концентрированной серной на холоде с образованием оксида меди(II): $Cu + H_2SO_4 \rightarrow CuO + SO_2 + H_2O$; • концентрированной серной при нагревании с образованием
 - сульфата меди(II): $Cu + 2H_2SO_4 \xrightarrow{t^\circ} CuSO_4 + SO_2 + 2H_2O_5$;
 - разбавленной азотной с образованием нитрата меди(II): $3Cu + 8HNO_2 \rightarrow 3Cu(NO_2)_2 + 2NO + 4H_2O_3$
 - концентрированной азотной с образованием нитрата меди(II): $Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$;
 - царской водкой (смесью азотной и хлороводородной кислот в соотношении 1:3) с образованием хлорида меди(II) — $CuCl_{2}$: $3Cu + 2HNO_{3} + 6HCl \rightarrow 3CuCl_{2} + 2NO + 4H_{2}O$.

Соединения меди(І)

- □ Оксид (Си,О) твердое вещество красного цвета, обладает свойствами основных оксидов:
 - взаимодействует с кислотами: $Cu_2O + 2HCl \rightarrow 2CuCl + H_2O$;

- взаимодействует с разбавленной серной кислотой: $Cu_2O + H_2SO4 \rightarrow Cu + CuSO_4 + H_2O$ (наблюдается реакция диспропорционирования);
- взаимодействует с водным раствором аммиака: $Cu_2O + 4NH_3 + H_2O \rightarrow 2[Cu(NH_3)_2]OH$ (перевод нерастворимой формы меди в растворимую, образование комплексного соединения аммиаката).
- □ $\Gamma u \partial poκcu \partial$ (CuOH) твердое вещество светло-желтого цвета, крайне неустойчивое на воздухе: $2CuOH \rightarrow Cu_2O + H_2O$.
- □ *Соли*: известны соединения меди(I) с галогенами:
 - взаимодействие хлорида меди(I) со щелочью приводит к образованию гидроксида меди(I): $CuCl + NaOH \rightarrow CuOH + NaCl$;
 - взаимодействие хлорида меди(I) с аммиаком приводит к образованию аммиакатов: $CuCl + 2NH_3 \rightarrow [Cu(NH_3)_2]Cl;$
 - взаимодействие иодида меди(I) с концентрированной соляной кислотой приводит к образованию комплексного соединения зеленого цвета — дихлорокупрата(I) водорода H[CuCl₀]: CuI + 2HCl → H[CuCl₀] + HI.

Соединения меди(II)

- \square Оксид (CuO) твердое вещество черного цвета, не растворяется в воде:
 - получают в результате термического разложения солей меди(II) (нитраты, карбонаты) либо гидроксида меди(II) $Cu(OH)_2$: $2Cu(NO_3)_2 \xrightarrow{t^\circ} 2CuO + 4NO_2 + O_2$ (разложение нитрата меди(II)), $(CuOH)_2CO_3 \xrightarrow{t^\circ} 2CuO + CO_2 + H_2O$ (разложение гидроксокарбоната меди(II));
 - обладает свойствами амфотерных оксидов и взаимодействует с кислотами: $\text{CuO} + 2\text{HCl} \rightarrow \text{CuCl}_2 + \text{H}_2\text{O}$ и щелочами: $\text{CuO} + 2\text{NaOH} + \text{H}_2\text{O} \rightarrow \text{Na}_2[\text{Cu(OH)}_4]$ (с образованием тетрагидроксокупратов);

- обладает слабыми окислительными свойствами: $CuO + H_2 \xrightarrow{t^*} Cu + H_2O$ (оксид меди(II) восстанавливается водородом при нагревании до металлической меди).
- \square $\Gamma u \partial pokcu \partial$ (Cu(OH)₂) твердое вещество голубого цвета, не растворяется в воде:
 - обладает амфотерными свойствами и взаимодействует с кислотами: $Cu(OH)_2 + 2HCl \rightarrow CuCl_2 + H_2O$ и щелочами: $Cu(OH)_2 + 2KOH \rightarrow K_2[Cu(OH)_4]$ (реакция протекает с образованием комплексного соединения тетрагидроксокупрата(II) калия);
 - обладает слабыми окислительными свойствами: $2Cu(OH)_2 + CH_3CHO \xrightarrow{t^\circ} Cu_2O + CH_3COOH + 2H_2O$ (окисление альдегидов до карбоновых кислот).

Применение

Изготовление силовых кабелей, проводов и труб; сельское хозяйство (сплавы на основе меди — бронза (медь с оловом) и латунь (медь с цинком) — для борьбы с вредителями растений).

Цинк (IIB-группа, IV период)

Представители

Цинк Zn, кадмий Cd, ртуть Hg. Наибольший интерес среди этого ряда металлов представляет цинк.

Важнейшие природные соединения

Сфалерит ZnS, смитсонит ZnCO $_3$, цинкит ZnO, каламин 2ZnO · SiO2 · H2O.

Физические свойства

Мягкий металл голубовато-серого цвета, хорошо проводит электрический ток, $t_{n\pi}=4195~^{\circ}\mathrm{C}$.

Получение

Обогащенную руду сжигают в печах, переводя сульфид цинка в оксид цинка: $2{\rm ZnS}+3{\rm O}_2\to 2{\rm ZnO}+2{\rm SO}_2$; далее процесс получения металлического цинка идет двумя путями:

	пирометаллургическим методом: ZnO+C $\stackrel{t^\circ}{-}$ Zn+CO (восстановление оксида цинка углем или коксом);
	гидрометаллургическим методом (электролиз солей цинка): ${\rm ZnSO_4} + {\rm 2H_2O} \rightarrow {\rm Zn} + {\rm O_2} + {\rm H_2} + {\rm H_2SO_4}$ (суммарное уравнение электролиза раствора сульфата цинка).
Χı	имические свойства
	В химических соединениях проявляет степень окисления $+2$ (химически активный металл), обладает амфотерными свойствами, склонен к комплексообразованию;
	взаимодействует с кислородом при высоких температурах с образованием оксида цинка: $2\mathrm{Zn} + \mathrm{O_2} \xrightarrow{t^\circ} 2\mathrm{ZnO};$
	взаимодействует с серой при высоких температурах с образованием сульфида цинка: ${\rm Zn} + {\rm S} \xrightarrow{t^o} {\rm ZnS};$
	взаимодействует с галогенами при высоких температурах с образованием галогенидов цинка: $Zn+Cl_2 \xrightarrow{t^c} ZnCl_2$, $Zn+Br_2 \xrightarrow{t^c} ZnBr_2$;
	взаимодействует с фосфором при высоких температурах с образованием фосфидов различного химического состава: $3Zn+2P \xrightarrow{t^o} Zn_3P_2$, $Zn+2P \xrightarrow{t^o} ZnP_2$;
	взаимодействует с аммиаком при высоких температурах с образованием нитрида цинка: $3Zn+2NH_3 \xrightarrow{t^\circ} Zn_3N_2 + 3H_2$ (напрямую реакция с молекулярным азотом не идет);
	взаимодействует с растворами кислот (HCl, ${\rm H_2SO_4}$ и т. д.):
	$\operatorname{Zn} + 2\operatorname{HCl} \xrightarrow{t^{\circ}} \operatorname{ZnCl}_2 + \operatorname{H}_2;$
	взаимодействует с растворами щелочей: Zn + 2NaOH + 2H $_2$ O \to Na $_2$ [Zn(OH) $_2$] + H $_2$.
Co	единения цинка
	$O\kappa cu\partial$ (ZnO) — твердое вещество белого цвета. Обладает свойствами амфотерных оксидов:
	• взаимодействует с кислотами: ZnO + 2HCl $ ightarrow$ ZnCl $_2$ + H $_2$ O;
	• взаимодействует со щелочами (сплавление): ZnO+
	$+2\text{NaOH} \xrightarrow{t^{\circ}} \text{Na}_2 \text{ZnO}_2 + \text{H}_2 \text{O}.$

- □ Гидроксид (Zn(OH)₂) твердое вещество белого цвета, практически не растворимое в воде, обладает амфотерными свойствами, склонен к термическому разложению:
 - взаимодействует с кислотами: $Zn(OH)_2 + H_2SO_4 \rightarrow ZnSO_4 + 2H_2O;$
 - взаимодействует с кислотными оксидами: $\mathrm{Zn}(\mathrm{OH})_2 + + \mathrm{CO}_2 \to \mathrm{ZnCO}_3 + \mathrm{H}_2\mathrm{O};$
 - взаимодействует со щелочами: ${\rm Zn}({\rm OH})_2 + {\rm 2NaOH} \to {\rm Na}_2 {\rm ZnO}_2 + {\rm 2H}_2 {\rm O};$
 - реакция термического разложения: $Zn(OH)_2 \xrightarrow{t^*} ZnO + H_sO$;
 - реакция комплексообразования: $Zn(OH)_2 + 4NH_3 \rightarrow [Zn(NH_3)_4](OH)_2$.

Применение

Медицина (оксид цинка ZnO — антисептическое и противовоспалительное средство), промышленность (производство шин, масляных красок и сплавов, процесс цинкования (защита стали от коррозии)).

Марганец (VIIB-группа, IV период)

Важнейшие природные соединения

Пиролюзит $\mathrm{MnO_2} \cdot n\mathrm{H2O}$, манганит $\mathrm{MnO(OH)}$, гаусманит $\mathrm{Mn_3O_4}$, браунит $\mathrm{3Mn_2O_3} \cdot \mathrm{MnSiO_3}$, родохрозит $\mathrm{MnCO_3}$.

Физические свойства

Твердый металл серебристого цвета, $t_{\text{пл.}} = 1244 \, ^{\circ}\text{C}$.

Получение

- □ Алюминотермия (из пиролюзита): $4\text{MnO}_2 \rightarrow 2\text{Mn}_2\text{O}_3 + \text{O}_2$, $\text{Mn}_2\text{O}_3 + 2\text{Al} \rightarrow \text{Al}_2\text{O}_3 + 2\text{Mn}$ (восстановление оксида марганца(III) алюминием);
- гидрометаллургический метод (электролиз солей марганца): ${\rm MnSO_4+2H_2O} \rightarrow {\rm Mn+O_2+2H_2SO_4}$ (суммарное уравнение электролиза раствора сульфата марганца).

Химические свойства

- □ В химических соединениях может проявлять степени окисления +2, +3, +4, +6, +7: □ взаимодействует с кислородом при высоких температурах с образованием оксида марганца(IV): $Mn + O_2 \rightarrow MnO_2$; □ взаимодействует с серой при высоких температурах с образованием сульфидов марганца различного химического состава — MnS и MnS₂: Mn + S \rightarrow MnS, Mn + 2S \rightarrow MnS₂; 🗆 взаимодействует с фосфором при высоких температурах с образованием фосфидов марганца различного химического состава — MnP, MnP₂, Mn₃P, Mn₃P₂: Mn + P \rightarrow MnP; 🗆 взаимодействует с галогенами с образованием галогенидов марганца(II); в случае с фтором возможно образование фторидов марганца(III и IV), а с хлором — хлорида марганца(III): $Mn + Br_2 \rightarrow MnBr_2$, $Mn + 2F_2 \rightarrow MnF_4$; 🗆 взаимодействует с водой при небольшом нагревании с образованием гидроксида марганца(II): Mn + 2H₂O → \rightarrow Mn(OH)₂ + H₂; □ взаимодействует с кислотами: • разбавленными соляной, серной и т. д. с образованием
 - солей марганца(II): $Mn + 2HCl \rightarrow MnCl_2 + H_2$;
 - концентрированной серной кислотой с образованием сульфата марганца и оксида серы(IV): $Mn + 2H_0SO_4 \rightarrow$ \rightarrow MnSO₄ + SO₉ + 2H₉O
 - разбавленной азотной кислотой с образованием нитрата марганца(II) и оксида азота(II): $3Mn + 8HNO_3 \rightarrow 3Mn(NO_3)_2 +$ $+3NO + 4H_{0}O.$

Соединения марганца(II)

- \square $O\kappa cu\vartheta$ (MnO) твердое вещество зеленого цвета, не растворяется в воде, обладает свойствами основных оксидов:
 - взаимодействует с кислотами: $Mn + 2HCl \rightarrow MnCl_2 + H_2O$;
 - взаимодействует с кислотными оксидами: MnO + $\mathrm{CO_2} \! \to \!$ \rightarrow MnCO₂.

- \square $\Gamma u \partial po\kappa cu \partial (Mn(OH)_2)$ твердое вещество белого цвета:
 - крайне неустойчив на воздухе: $2Mn(OH)_2 + O_2 + 2H_2O \rightarrow 2Mn(OH)_4$ (гидроксид марганца(II) быстро буреет, образуя гидроксид марганца(IV));
 - проявляет свойства основных гидроксидов и взаимодействует с кислотами: $\mathrm{Mn}(\mathrm{OH})_2 + \mathrm{H_2SO_4} \to \mathrm{MnSO_4} + 2\mathrm{H_2O};$
 - проявляет свойства основных гидроксидов и взаимодействует с кислотными оксидами: $Mn(OH)_2 + CO_2 \rightarrow$ $\rightarrow MnCO_3 + H_2O$;
 - обладает слабыми восстановительными свойствами: $2\text{Mn}(\text{OH})_2 + 5\text{KBrO}_3 + 2\text{KOH} \rightarrow 2\text{KMnO}_4 + 5\text{KBr} + 3\text{H}_2\text{O}$ (под действием сильных окислителей возможно окисление гидроксида марганца(II) до перманганата калия KMnO_4 , где атом марганца имеет степень окисления +7).

Соединения марганца(III)

- $\hfill \hfill O\kappa cu \partial \mbox{ } (\mbox{Mn}_2\mbox{O}_3)$ твердое вещество бурого цвета, не растворяется в воле:
 - обладает свойствами основных оксидов (взаимодействует с кислотами): $\mathrm{Mn_2O_3} + \mathrm{6HCl} \rightarrow \mathrm{2MnCl_3} + \mathrm{3H_2O};$
 - обладает окислительными свойствами: $Mn_2O_3 + H_2 \rightarrow 2MnO + H_2O;$
 - обладает восстановительными свойствами: $2Mn_2O_3 + 4H_2SO_4 \rightarrow 2MnO_2 + Mn_2(SO_4)_3 + SO_2 + 4H_2O$ (в разбавленной серной кислоте оксид марганца(III) окисляется до оксида марганца(IV)).
- \square Гидроксид (MnOOH) твердое вещество серого цвета, не растворяется в воде:
 - обладает основными свойствами и взаимодействует с кислотами (реакция диспропорционирования): 2MnOOH + + 2HCl → MnCl₂ + MnO₂ + 2H₂O;
 - при нагревании разлагается с образованием оксида марганца(III): $2MnOOH \xrightarrow{t^o} Mn_2O_3 + H_2O$.

	Conu (Mn,(Ac)3) неустойчивы: $2\mathrm{MnCl_3} \to 2\mathrm{MnCl_2} + \mathrm{Cl_2}$ (при $t=-40$ °C) происходит разложение хлорида марганца(III)).
Co	единения марганца(IV)
	$O\kappa cu\partial$ (MnO $_2$) — твердое вещество темно-коричневого цвета, не растворяется в воде, окислительно-восстановительные свойства выражены намного сильнее, чем кислотно-основные:
	• получают в результате термического разложения нитрата марганца(II): $\mathrm{Mn(NO_3)_2} \rightarrow \mathrm{MnO_2} + \mathrm{2NO_2};$
	• обладает окислительными свойствами: MnO $_2+4HCl\to MnCl_2+Cl_2+2H_2O;$
	• обладает восстановительными свойствами: $3 \text{MnO}_2 + \text{KClO}_3 + 6 \text{KOH} \rightarrow 3 \text{K}_2 \text{MnO}_4 + \text{KCl} + 3 \text{H}_2 \text{O}$ (оксид марганца(IV) окисляется до манганата калия, где атом марганца имеет степень окисления $+6$).
	$\Gamma u \partial pokcu\partial \ ({\rm Mn(OH)_4})$ — твердое вещество голубого цвета, не растворяется в воде, обладает амфотерными свойствами:
	• взаимодействует с кислотами: $Mn(OH)_4 + 4HCl \rightarrow MnCl_4 + 4H_2O$ (хлорид марганца(IV) крайне неустойчив — сразу же распадается на хлорид марганца (II) и молекулярный хлор: $MnCl_4 \rightarrow MnCl_2 + Cl_2$);
	• взаимодействует с основными оксидами (сплавление): $Mn(OH)_4 + CaO \xrightarrow{t^\circ} CaMnO_3 + 2H_2O$ (образуется манганит кальция);
	• взаимодействует со щелочами: $Mn(OH)_4 + 2NaOH \xrightarrow{t^o} Na_2[Mn(OH)_6]$.
	$Conu~(Mn_{_R}(Ac)_4)$ крайне неустойчивы: $Mn(SO_4)_2+2H_2O\to MnO_2+2H_2SO_4$ (гидролиз сульфата марганца идет с образованием оксида марганца(IV)).
Co	единения марганца(VI)
	$O\kappa cu\partial (\mathrm{MnO_3})$ — в свободном состоянии не выделен.
	$\Gamma u\partial p o \kappa c u\partial ({\rm H_2MnO_4})$ — марганцовистая кислота, не устойчива; реакция диспропорционирования идет с образованием оксида марганца(IV) и марганцовой кислоты: $3{\rm H_2MnO_4} \to {\rm MnO_2} + 2{\rm HMnO_4} + 2{\rm H_2O}$.

- $\hfill \Box$ Соли (манганаты) существуют только в щелочной среде, их растворы имеют темно-зеленую окраску:
 - в нейтральной и кислой среде гидролизуются, образуя перманганаты, которые окрашивают раствор в фиолетовый цвет: $3K_2MnO_4 + 2H_2O \rightarrow 2KMnO_4 + MnO_2 + 4KOH$;
 - обладают окислительными свойствами: $K_2MnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnO_2 + Na_2SO_4 + K_2SO_4 + H_2O;$
 - обладают восстановительными свойствами: $2K_2MnO_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$.

Соединения марганца(VII)

- $\ \square$ $\mathit{O\kappa cu}\vartheta\ (\mathrm{Mn_2O_7})$ жидкое вещество темно-зеленого цвета, растворяется в воде, неустойчив:
 - при взаимодействии с водой образует марганцовую кислоту: ${\rm Mn_2O_7} + {\rm H_2O} \rightarrow {\rm 2HMnO_4};$
 - обладает свойствами кислотных оксидов и взаимодействует с основаниями, образуя перманганаты: $\mathrm{Mn_2O_7} + 2\mathrm{NaOH} \rightarrow 2\mathrm{NaMnO_4} + \mathrm{H_2O};$
 - обладает свойствами кислотных оксидов и взаимодействует с основными оксидами, образуя перманганаты: $Mn_2O_7 + Na_2O \rightarrow 2NaMnO_4$;
 - при ударе или слабом нагревании разлагается со взрывом, образуя оксид марганца(IV) и молекулярный кислород: $2\mathrm{Mn_2O_7} \to 4\mathrm{MnO_2} + 3\mathrm{O_2}$.
- - проявляет сильные кислотные свойства, реагируя со щелочами (реакция нейтрализации): HMnO₄ + NaOH → NaMnO₄ + H₂O;
 - проявляет сильные окислительные свойства: $2HMnO_4 + 14HCl \rightarrow 2MnCl_2 + 5Cl_2 + 8H_2O$ (окисляет соляную кислоту с выделением молекулярного хлора).
- □ Соли (перманганаты) сильные окислители, растворы имеют фиолетовую окраску; в зависимости от среды образуются различные продукты реакции:

- в кислой среде: $2 \text{KMnO}_4 + 10 \text{KI} + 8 \text{H}_2 \text{SO}_4 \rightarrow 2 \text{MnSO}_4 + 5 \text{I}_2 + 6 \text{K}_2 \text{SO}_4 + 8 \text{H}_2 \text{O}$ (восстанавливается до сульфата марганца(II));
- в нейтральной среде: $2KMnO_4 + 6KI + 4H_2SO_4 \rightarrow 2MnO_2 + 3I_2 + 8H_2O$ (восстанавливается до оксида марганца (IV));
- в щелочной среде: $6 \text{KMnO}_4 + \text{KI} \rightarrow 6 \text{K}_2 \text{MnO}_4 + \text{KIO}_3 + \\ + 3 \text{H}_2 \text{O}$ (восстанавливается до соединения марганца(VI) манганата калия);
- взаимодействие с солями марганца, находящего в низших степенях окисления, с образованием оксида марганца(IV) (наиболее устойчивое соединение марганца): $2KMnO_4 + 3MnSO_4 + 2H_2O \rightarrow 5MnO_2 + K_2SO_4 + 2H_2SO_4$.

Применение

Промышленность (в качестве легирующей добавки при изготовлении стали, сплавов); органический синтез (соединения марганца — оксид марганца(IV) MnO_2 , перманганат калия $KMnO_4$).

Лантаноиды (IIIB-группа, VI период) и их соединения

Представители

14 элементов: церий Се, празеодим Pr, неодим Nd, прометий Pm, самарий Sm, европий Eu, гадолиний Gd, тербий Tb, диспрозий Dy, гольмий Но, эрбий Er, тулий Tm, иттербий Yb и лютеций Lu. Вместе с иттрием, скандием и лантаном лантаноиды относятся к редкоземельным элементам.

Важнейшие природные соединения

Содержатся в минералах (например, монацит, бастнезит, лопарит, ксенотим).

Физические свойства

Металлы серебристо-белого цвета, проводят электрический ток

	и тепло, обладают хорошей ковкостью (мягкие металлы) и средними температурами плавления ($t_{n_{\pi}}$ (Ce) = 804 °C, $t_{n_{\pi}}$ (Lu) = 1652 °C).		
	лучение		
	Металлотермический метод (основан на восстановлении лантаноидов (кроме самария Sm, европия Eu и иттербия Yb) из их хлоридов металлическим кальцием при высоких температурах): $2\text{CeCl}_3 + 3\text{Ca} \xrightarrow{t^2} 2\text{Ce} + 3\text{CaCl}_2$;		
	электролиз расплава солей.		
Xı	имические свойства		
	Химически активные вещества (по активности уступают только щелочным и щелочноземельным металлам);		
	в химических соединениях, как правило, проявляют степень окисления $+3$, реже $+2$, $+4$;		
	взаимодействуют с водой с образованием оснований и выделением водорода: $6{\rm H_2O}+3{\rm Ce}\to 2{\rm Ce}({\rm OH})_3+3{\rm H_2};$		
	взаимодействуют с кислородом при высоких температурах с образованием оксидов: $3O_2 + 4Nd - \frac{t^2}{2} > 2Nd_2O_3$;		
	взаимодействуют с азотом при высоких температурах с образованием нитридов: $N_2 + 2Ce \xrightarrow{t^o} 2CeN$.		

Соединения лантаноидов

- □ Оксиды (общая формула 9_2O_3 ; для церия характерен оксид CeO $_2$, являющийся в OBP окислителем) тугоплавкие вещества ($t_{\rm n.n.}$ (CeO $_2$) = 2500 °C):
 - взаимодействуют с водой с образованием гидроксидов: $\Pr_2O_3 + 3H_2O \rightarrow 2\Pr(OH)_3;$
 - обладают свойствами основных оксидов и взаимодействуют с кислотами-неокислителями: $\Pr_2O_3 + 6HCl \rightarrow 2\Pr Cl_2 + 3H_2O;$
 - обладают свойствами основных оксидов и взаимодействуют с кислотами-неокислителями (кислотными оксидами): $Pr_2O_3 + 6HCl \rightarrow 2PrCl_3 + 3H_2O;$
 - оксиды лантаноидов(IV), например ${\rm CeO_2}$, обладают окислительными свойствами: $2{\rm CeO_2} + 8{\rm HCl} \rightarrow 2{\rm CeCl_3} + + {\rm Cl_2} + 4{\rm H_2O}$.
- □ $\Gamma u \partial p o \kappa c u \partial \omega$ (общая формула $\Theta(OH)_3$): обладают всеми свойствами оснований и взаимодействуют с кислотами: $Dy(OH)_3 + 3HCI \rightarrow DyCl_3 + 3H_3O$.
- □ Соли: хлориды, сульфаты, нитраты лантаноидов хорошо растворимы воде; фосфаты, карбонаты, фториды мало растворимы в воде; не реагируют с кислотами.
- □ $\Gamma u \partial p u \partial b i$: подобно гидридам щелочных металлов взаимодействуют с водой: $ErH_3 + 3H_2O \rightarrow Er(OH)_3 + 3H_2$.

Применение

Металлургия (в качестве легирующей добавки к сталям); технологические процессы (соединения лантаноидов применяются в качестве катализаторов).

Актиноиды (IIIB-группа, VII период) и их соединения

Представители

14 радиоактивных элементов: торий Th, протактиний Pa, уран U, нептуний Np, плутоний Pu, америций Am, кюрий Cm, берклий Вk, калифорний Cf, эйнштейний Es, фермий Fm, менделевий Md, нобелий No и лоуренсий Lr.

Важнейшие природные соединения

Урановая смолка $\rm U_3O_8$, карнотит $\rm KUO_2VO_4 \cdot 3H_2O$, торианит $\rm ThO_2$, торит $\rm ThSiO_4$.

Физические свойства

Типичные мягкие металлы серебристого цвета, радиоактивны; отличаются хорошей ковкостью и средними температурами плавления (t_{ns} (Th) = 1750 °C, t_{ns} (U) = 1132 °C).

Получение

Восстановление актиноидов из их фторидов (например, фторида урана(IV) или фторида плутония(IV)) магнием Mg или кальцием $Ca: 2Mg + UF_4 \xrightarrow{t^e} U + 2MgF_2, 2Ca + PuF_4 \xrightarrow{t^e} Pu + 2CaF_2.$

Химические свойства

В химических соединениях проявляют различные степени
окисления, наиболее устойчивые из которых следующие:
уран U +6, плутоний Pu +4, торий Th +4, протактиний Pa +5,
нептуний Np +5, остальные — +3;

соединения актиноидов в других степенях окисления про-
являют окислительные либо восстановительные свойства
(соединения урана(III) — сильные восстановители);

подобно лантаноидам активно реагируют с кислородом, га-
логенами, водородом, углеродом, серой; известны основные
оксиды следующего состава: 9_2O_3 , $9O_2$ и 9_2O_5 , и амфотерный
оксид ЭО3.

Применение

Приборостроение, ядерная энергетика, космические технологии.

Неметаллы и их соединения

Азот (VA-группа, II период)

Нахождение в природе

Воздух (78 % объема составляет азот N_2); нитраты (так называемые селитры, например, «чилийская» селитра $NaNO_3$); аминокислоты, белки.

Физические свойства молекулярного азота

Газ, не обладает цветом и запахом, не растворяется в воде, легче воздуха, $t_{\rm кнп.}=-196$ °C. Природный азот представлен двумя изотопами: $^{14}_{7}$ N и $^{15}_{7}$ N.

Химические свойства

В химических соединениях может проявлять следующие степени окисления: -3 (аммиак NH_3), 0 (простое вещество азот N_2), +1 (оксид азота(I) N_2 O), +2 (оксид азота(II) NO₃), +3 (оксид азота(III) N_2 O₄), +4 (оксид азота(IV) N_2 O₅).

Соединения азота. Степень окисления -3

 \square Аммиак (NH $_3$) — газообразное вещество с характерным запахом. Водный раствор аммиака проявляет свойства слабых оснований ($K_{_{\mathrm{диес.}}}=1,8\cdot10^{-5}$). В качестве лиганда входит в состав многих комплексных соединений. Участвует в окислительно-восстановительных реакциях в качестве восстановителя.

Способы получения:

- взаимодействие азота с водородом в присутствии катализатора (в промышленности): $N_2 + 3H_2 \xrightarrow{t^{\varphi}, p, \, \text{кат.}} 2NH_3$;
- взаимодействие хлорида аммония с гидроксидом кальция (в лаборатории): $Ca(OH)_2 + 2NH_3Cl \rightarrow 2NH_3 + 2H_3O + CaCl_3$.

Свойства:

• взаимодействует с водой: $NH_3 + H_2O \longrightarrow NH_4OH \longrightarrow$ $\longrightarrow NH_4^+ + OH^-;$

- взаимодействует с кислотами с образованием средних или кислых (при основности кислоты больше 1) солей: $\mathrm{NH_3} + \mathrm{HCl} \to \mathrm{NH_4Cl}$: $\mathrm{NH_3} + \mathrm{HCl} \to \mathrm{NH_4Cl}$ (получение хлорида аммония нашатыря), $\mathrm{NH_3} + \mathrm{H_3PO_4} \to \to (\mathrm{NH_4})\mathrm{H_2PO_4}$ (образование кислой соли дигидрофосфата аммония):
- взаимодействует с солями тяжелых металлов-комплексоообразователей: 2NH₃ + AgCl → [Ag(NH₃)₂]Cl (образование хлорида диаммина серебра(I));
- взаимодействует с кислородом (реакция горения):
 4NH₂ +3O₂

 ^{t°}→2N₂ +6H₂O;
- взаимодействует с кислородом в присутствии катализатора: $4NH_3 + 5O_2 \xrightarrow{f^*, Pt} 4NO + 6H_2O;$
- □ Соли аммония ((NH $_4$) $_2$ SO $_4$) твердые кристаллические вешества.
 - термическое разложение солей аммония зависит от природы аниона: $(NH_4)_2SO_4 \xrightarrow{t^c} NH_3 + NH_4HSO_4$, $NH_4NO_3 \xrightarrow{t^c} N_2O + 2H_2O$, $NH_4Cl \xrightarrow{t^c} NH_3 + HCl$;
 - * качественная реакция на соли аммония: $\mathrm{NH_4Cl} + \mathrm{NaOH} \xrightarrow{t^\circ} \mathrm{NH_3} + \mathrm{NaCl} + \mathrm{H_2O}$ (выделяющийся в ходе реакции газообразный аммиак имеет специфический легкоузнаваемый запах; кроме того о присутствии аммиака в воздухе свидетельствует посиневшая лакмусовая бумажка).

Соединения азота. Степень окисления 0

 $\ \square$ Азот (N_2) — химически малоактивное вещество (вступает во взаимодействие исключительно при высоких температурах).

Способы получения:

• термическое разложение нитрита аммония NH_4NO_2 : $NH_4NO_2 \xrightarrow{t^\circ} N_2 + 2H_2O_3$;

- термическое разложение аммиака $\mathrm{NH_3}$: $2\mathrm{NH_3} \xrightarrow{t^\circ} \mathrm{N_2} + 3\mathrm{H_2}$;
- термическое разложение оксида азота(I) N_2 O: $2N_2$ O $\xrightarrow{t^\circ}$ $2N_2$ + O₂.

Свойства:

- взаимодействует с водородом в присутствии катализатора с образованием аммиака: $N_2 + 3H_2 \xrightarrow{t^*, p, \text{кат.}} 2NH_3;$
- взаимодействует с кислородом с селективным образованием оксида азота(II): $N_o + O_o \xrightarrow{t^o} 2NO;$
- взаимодействует с металлами с образованием нитридов: $N_2 + 3Ca \xrightarrow{f^2} Ca_3N_2$ (получение нитрида кальция);
- взаимодействует с фтором с образованием фторида азота: $N_2 + 3F_2 \xrightarrow{t^\circ} 2NF_3$.

Соединения азота. Степень окисления +1

 $\hfill \Box$ Оксид азота(I) (N_2O) — газ без цвета, со слабым сладковатым запахом. Хорошо растворим в воде. Относится к несолеобразующим оксидам.

Способы получения: термическое разложение нитрата аммония: $NH_4NO_3 \xrightarrow{f^2} N_2O + 2H_2O$.

Свойства: при высокой температуре происходит разложение на молекулярные азот и кислород: $2N_2O \xrightarrow{t^\circ} 2N_2 + O_2$.

Соединения азота. Степень окисления +2

 Оксид азота(II) (NO) — газ без цвета и запаха, плохо растворим в воде, относится к несолеобразующим оксидам.

Способы получения:

- * каталитическое окисление аммиака: $4NH_3 + 5O_2 \xrightarrow{t^\circ, p, \text{ кат.}} 4NO + 6H_2O;$
- взаимодействие молекулярного азота и кислорода при высоких температурах или электрических разрядах: $N_2 + O_2 \stackrel{t^*}{\longrightarrow} 2NO;$

- получение оксида азота(II) *в лаборатории:* 8HNO₃ + +3Cu $\xrightarrow{t^o}$ 2NO+2Cu(NO₃)₂+4H₂O;
- обратимая реакция разложения оксида азота(IV): $2NO_2 \stackrel{t^c}{\longleftrightarrow} 2NO + O_5$;
- термическое разложение азотистой кислоты: 2HNO $_2$ $\xrightarrow{t^\circ}$ NO $_2$ + NO + H $_2$ O;
- термическое разложение оксида азота(III): $N_2O_3 \xrightarrow{t^\circ} NO_2 + NO$.

Свойства:

- обладает восстановительными свойствами: $2NO + O_2 \rightarrow 2NO_2$ (довольно быстро буреет на воздухе, превращаясь в оксид азота(IV));
- окисление перманганатом калия в кислой среде идет до максимально возможной степени окисления азота +5 в составе азотной кислоты HNO_3 : $NO + KMnO_4 + H_2SO_4 \rightarrow HNO_3 + MnSO_4 + K_3SO_4 + H_2O$;
- взаимодействует с оксидом азота(IV) с образованием оксида азота(III): $NO_2 + NO \Longrightarrow N_2O_3$;
- обладает окислительными свойствами: $2NO + 5H_2 \xrightarrow{t^\circ, p, \text{кат.}} 2NH_3 + 2H_2O$ (каталитическое восстановление молекулярным водородом).

Соединения азота. Степень окисления +3

□ Оксид азота(III) (N_2O_3) — жидкость темно-синего цвета, проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами). Содержит атом азота в промежуточной степени окисления, поэтому активно участвует в ОВР. Относится к солеобразующим оксидам.

Способы получения: взаимодействие оксидов азота(II) и (IV) между собой: $NO_2 + NO \Longrightarrow N_2O_3$.

Свойства:

• взаимодействует с водой с образованием азотистой кислоты: $N_2O_3 + H_2O \rightarrow 2HNO_2$;

- взаимодействует со слабыми основаниями: $N_2O_3 + H_2O + + 2NH_3 \rightarrow 2NH_4NO_3$ (образование нитрита аммония);
- взаимодействует с растворами щелочей: $N_2O_3 + 2KOH \rightarrow 2KNO_2 + H_2O$ (образование нитрита калия);
- реакция диспропорционирования идет с образованием оксидов азота(IV) и (II): $N_2O_3 \xrightarrow{t^2} NO_2 + NO_5$
- взаимодействует с озоном с образованием оксида азота(V): $N_9O_3+2O_3\to N_9O_5+2O_9$.
- \square Азотистая кислота (HNO $_2$) слабая кислота (реагирует с основаниями), проявляет как восстановительные, так и окислительные свойства; разбавленные растворы имеют голубоватый оттенок.

Способы получения: $N_2O_3 + H_2O \rightarrow 2HNO_2$, $2NO_2 + H_2O \Longrightarrow HNO_2 + HNO_3$ (получение смеси кислот).

Свойства:

- разбавленные кислоты вытесняют кислоту из ее солей: $HCl + NaNO_0 \rightarrow NaCl + HNO_0$;
- взаимодействует со слабым основанием с образованием нитрита аммония: $\mathrm{HNO_2} + \mathrm{NH_3} \to \mathrm{NH_4NO_2};$
- проявляет окислительные свойства: 2HNO $_2$ + 2HI \rightarrow I $_2$ + 2NO + 2H $_2$ O, 4HNO $_2$ + 3Na[AlH $_4$] + 4H $_2$ O \rightarrow 4NH $_3$ + +3Na[Al(OH) $_4$];
- проявляет восстановительные свойства: $HNO_2 + Cl_2 + H_2O \rightarrow HNO_2 + 2HCl$;
- разложение водных растворов азотистой кислоты происходит при небольшом нагревании: $2HNO_2 \xrightarrow{t^\circ} NO_2 +$ $+NO+H_2O$.

Соединения азота. Степень окисления +4

Оксид азота(IV) ($\mathrm{NO_2}$) — газ бурого цвета со специфическим
запахом, проявляет свойства кислотных оксидов (реагирует
с основаниями, основными оксидами). Содержит атом азо-
та в промежуточной степени окисления, поэтому активно

участвует в окислительно-восстановительных реакциях. Относится к солеобразующим оксилам.

Способы получения:

- окисление меди концентрированной азотной кислотой (в лаборатории): $Cu + 4HNO_s \rightarrow Cu(NO_s)_s + 2NO_s + 2H_sO_s$
- окисление оксида азота(II) молекулярным кислородом (в промышленности): $2NO + O_2 \rightarrow 2NO_2$.

Свойства:

- взаимодействует с водой приводит с образованием двух кислот азотистой HNO_2 и азотной HNO_3 : $2NO_2 + H_0O \rightleftharpoons HNO_9 + HNO_9$;
- взаимодействует с водой на открытом воздухе с образованием только азотной кислоты: $4NO_2 + 2H_2O + O_2 \longleftrightarrow 4HNO_3$;
- взаимодействует с растворами щелочей с образованием двух солей нитрита и нитрата: $2NO_2 + 2NaOH \Longrightarrow NaNO_2 + NaNO_3 + H_2O$;
- взаимодействует с растворами щелочей на открытом воздухе с образованием только нитратов: $4NO_2+4NaOH++O_2\rightarrow 4NaNO_3+2H_2O;$
- при $t=+22\,^{\circ}\mathrm{C}$ оксид азота(IV) димеризуется, в результате чего образуется бесцветная жидкость: $2\mathrm{NO}_2 \to \mathrm{N}_2\mathrm{O}_4$;
- термическое разложение оксида азота(IV) приводит к образованию оксида азота(II) и молекулярного кислорода:
 N₂O₃ t° → NO₂ + NO;
- взаимодействует с озоном с образованием оксида азота(V): $2NO_2+O_3\to N_2O_5+O_2$.

Соединения азота. Степень окисления +5

 \square Оксид азота(V) (N_2O_5) — бесцветное твердое вещество. Крайне неустойчив. Проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами). Относится к солеобразующим оксидам.

Способы получения:

- взаимодействие оксида азота(IV) с озоном: $2{\rm NO_2} + {\rm O_3} \rightarrow {\rm N_2O_5} + {\rm O_2};$
- дегидратация азотной кислоты: $2 \text{HNO}_3 + \text{P}_2 \text{O}_5 \to \text{N}_2 \text{O}_5 + 2 \text{HPO}_3$.

Свойства:

- взаимодействует с водой с образованием азотной кислоты $\mathrm{HNO_3}$: $\mathrm{N_2O_5} + \mathrm{H_2O} \rightarrow \mathrm{2HNO_3}$;
- взаимодействует с основными оксидами с образованием нитратов: $N_2O_5 + CuO \rightarrow Cu(NO_3)_2$;
- взаимодействует с растворами щелочей с образованием нитратов: $N_2O_5 + 2NaOH \rightarrow 2NaNO_3 + H_2O;$
- термическое разложение приводит к образованию оксида азота(IV) и молекулярного кислорода (реакция идет со взрывом): $2N_2O_5$ — t^o $4NO_2+O_2$.
- \square Азотная кислота (HNO₃) бесцветная жидкость с резким запахом, хорошо растворимая в воде ($t_{\text{кип.}} = 83^{\circ}\text{C}$). Как правило, используется концентрированная азотная кислота ($c = 63^{\circ}$). Проявляет свойства сильной кислоты (реагирует с основаниями, основными оксидами, солями более слабых кислот) и агрессивного окислителя.

Способы получения:

- взаимодействие нитрата бария с серной кислотой (в лаборатории): $Ba(NO_3)_2 + H_2SO_4 \rightarrow BaSO_4 + 2HNO_3$;
- трехстадийное окисление аммиака (в промышленности, получение по Андрееву И. И.): $4{\rm NH_3} + 5{\rm O_2} \xrightarrow{t^o, p, \, {\rm Kar.}} \to \frac{t^o, p, \, {\rm Kar.}}{4{\rm NO} + 6{\rm H_2O}}$, $2{\rm NO} + {\rm O_2} \to 2{\rm NO_2}$, $4{\rm NO_2} + 2{\rm H_2O} + {\rm O_2} \longleftrightarrow 4{\rm HNO_3}$.

Свойства:

• самопроизвольно разлагается на свету: $4 \text{HNO}_3 \rightarrow 4 \text{NO}_2 + 2 \text{H}_2 \text{O} + \text{O}_3$;

- взаимодействует с основными оксидами с образованием нитратов: $MgO + 2HNO_3 \rightarrow Mg(NO_3)_9 + H_9O;$
- взаимодействует с основаниями с образованием нитратов: $\text{HNO}_3 + \text{KOH} \to \text{KNO}_3 + \text{H}_2\text{O}, \text{ NH}_3 + \text{HNO}_3 \to \text{NH}_4\text{NO}_3;$
- взаимодействует с солями более слабых кислот: ${
 m K_2CO_3} + {
 m 2HNO_3} \rightarrow {
 m 2KNO_3} + {
 m H_2O} + {
 m CO_2};$
- взаимодействует с металлами (электрохимический ряд напряжений Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au):
 - наиболее активными, стоящими в ряду напряжений до Al: $10 HNO_{3(\text{коид.})} + 4 Ca \rightarrow N_2 O + 4 Ca(NO_3)_2 + 5 H_2 O$ (концентрированная азотная кислота восстанавливается до оксида азота(I)), $10 HNO_{3(\text{разб.})} + 4 Mg \rightarrow NH_4 NO_3 + 4 Mg(NO_3)_2 + 3 H_2 O$ (разбавленная азотная кислота восстанавливает до аммиака, который вступая во взаимодействие с азотной кислотой, образует нитрат аммония: $NH_3 + HNO_3 \rightarrow NH_4 NO_3$);
 - менее активными (Ni, Cu, Ag): $4\text{HNO}_{3(\text{конц.})} + \text{Cu} \rightarrow 2\text{NO}_2 + \text{Cu}(\text{NO}_3)_2 + 2\text{H}_2\text{O}$ (концентрированная азотная кислота восстанавливается до оксида азота(IV)), $8\text{HNO}_{3(\text{разб.})} + 3\text{Cu} \rightarrow 2\text{NO} + 3\text{Cu}(\text{NO}_3)_2 + 4\text{H}_2\text{O}$ (разбавленная азотная кислота восстанавливается до оксида азота(II));
 - некоторыми металлами (Al, Fe, Cr) образуется плотная оксидная пленка, предотвращающая дальнейшее окисление металла (пассивирование металла): $3Al + 12HNO_3 \rightarrow Al_2O_3 + Al(NO_3)_3 + 9NO_2 + 6H_2O$;
 - металлами, стоящими в конце ряда напряжений (Au, Pt), не реагирует: HNO₂ + (Pt, Au) >>>;
- взаимодействует с неметаллами (как и в случае с металлами, разбавленная кислота восстанавливается глубже, чем концентрированная): $5 \mathrm{HNO}_{3 \mathrm{(конц.)}} + \mathrm{P} \rightarrow 5 \mathrm{NO}_2 + \mathrm{HPO}_3 + + 2 \mathrm{H}_2 \mathrm{O}$ (восстановление концентрированной азотной

кислоты до оксида азота(IV)), $5 \mathrm{HNO}_{3\mathrm{(pas6.)}} + 3 \mathrm{P} + 2 \mathrm{H}_2 \mathrm{O} \to 5 \mathrm{NO} + 3 \mathrm{H}_3 \mathrm{PO}_4$ (восстановление разбавленной азотной кислоты до оксида азота(II)).

- □ Нитраты (тривиальное название селитры) твердые кристаллические вещества, хорошо растворимы в воде. В зависимости от типа катиона (места расположения металла в ряду напряжений) при термическом разложении нитратов образуются различные продукты реакции:
 - при разложении нитратов металлов, расположенных в ряду напряжений до магния Mg, образуются нитриты и молекулярный кислород: $KNO_3 \xrightarrow{t^2} KNO_2 + O_2$;
 - при разложении нитратов металлов, расположенных в ряду напряжений от магния Mg до меди Cu, образуются оксид металла, молекулярный кислород и оксид азота(IV): $2\text{Mg}(\text{NO}_3)_2 \xrightarrow{t^2} 2\text{MgO} + 4\text{NO}_2 + \text{O}_2;$
 - при разложении нитратов металлов, расположенных в ряду напряжений после меди Cu, образуются свободный металл, молекулярный кислород и оксид азота(IV): $2AgNO_3 \xrightarrow{t^*} 2Ag + 2NO_2 + O_2.$

Применение

Медицина (нашатырь $\mathrm{NH_4Cl}$ и нашатырный спирт $\mathrm{NH_4OH}$); сельское хозяйство (селитра, например нитрат аммония $\mathrm{NH_4NO_3}$, используется в качестве удобрения); изготовление лекарств и взрывчатого вещества нитроглицерина (динамита) (азотная кислота $\mathrm{HNO_3}$).

Фосфор (VA-группа, III период)

Нахождение в природе

Фосфорит Ca₃(PO₄)₂, хлорапатит Ca₃(PO₄)₂ · CaCl₂, фторапатит Ca₃(PO₄)₂ · CaF₂.

Физические свойства

Твердое вещество кристаллического или аморфного строения. Аллотропные модификации (нерастворимы в воде): белый,

красный, черный (существуют при обычных условиях) и металлический (существует при сверхвысоких давлениях) фосфор. Общая формула белого фосфора — P_4 (для удобства записывается просто P); других модификаций — P_n (неорганические полимеры).

Белый фосфор в отличие от остальных модификаций имеет молекулярную кристаллическую решетку, светится в темноте, сильно ядовит, $t_{\rm m.n.}=44.1~{\rm ^{\circ}C}$. Переход от белого фосфора к красному возможен при повышении температуры до $300~{\rm ^{\circ}C}$. Переход от белого и красного фосфора к черному возможен при очень высоком давлении (около $13~000~{\rm atm.}$) и нагревании до $200~{\rm ^{\circ}C}$.

Красный фосфор не плавится, начинает сублимировать при $t_{\text{суб.}} = 240\,^{\circ}\text{C}$. При охлаждении пары кристаллизуются в белый фосфор.

Химические свойства

В химических соединениях проявляет следующие степени окисления: -3 (фосфин PH_3), 0 (простое вещество фосфор P), +3 (оксид фосфора P_2O_3), +5 (оксид фосфора P_2O_5).

Соединения фосфора. Степень окисления = -3

 \square Фосфин (PH $_3$) — газообразное вещество с характерным запахом, плохо растворимое в воде. Водный раствор проявляет свойства очень слабых оснований ($K_{\text{дисс.}} = 4 \cdot 10^{-25}$); сильный восстановитель.

Способы получения:

- реакция диспропорционирования фосфора при его взаимодействии с растворами щелочей: $4P + 3KOH + 3H_2O \xrightarrow{t^\circ} PH_2 + 3KH_3PO_3$;
- взаимодействие соляной кислоты с фосфидами металлов: $\mathrm{Ca_3P_2} + \mathrm{6HCl} \to \mathrm{2PH_3} + \mathrm{3CaCl_2}.$

- взаимодействует с водой: $PH_3 + H_2O \longrightarrow PH_4OH \longrightarrow PH_4^+ + OH^-;$
- взаимодействует с сильными кислотами (HCl, HClO $_4$) с образованием солей фосфония: $PH_3 + HCl \rightarrow PH_4Cl$ (получение хлорида фосфония);

- реакция горения (протекает самопроизвольно при повышении температуры до 150 °C): $2PH_3 + 4O_2 \xrightarrow{t^0} P_2O_5 + 3H_2O$ (образование оксида фосфора(V));
- восстанавливает соли малоактивных металлов до свободных металлов: $PH_3 + 8AgNO_3 + 4H_2O \rightarrow H_3PO_4 + 8Ag + 8HNO_3$.

Соединения фосфора. Степень окисления = 0

Фосфор (Р), наиболее активная модификация — белый фосфор.
 Обладает как восстановительными, так и окислительными свойствами.

Способы получения:

- прокаливание фосфата кальция $Ca_3(PO_4)_2$ в присутствии песка(SiO_2) иугля $C: Ca_3(PO_4)_2 + 3SiO_2 + 5C \xrightarrow{t^2} 3CaSiO_3 + 2P + 5CO:$
- восстановление метафосфорной кислоты $HPO_3:4HPO_3+12C-\frac{t^\circ}{12}12CO+2H_2+4P$.

- взаимодействует с металлами с образованием фосфидов: $2P + 3Ca \rightarrow Ca_2P_3;$
- взаимодействует с неметаллами:
 - избытком кислорода с образованием оксида фосфора(V): $4P+5O_5$ — t^5 \rightarrow 2 P_5O_5 ;
 - недостатком кислорода с образованием оксида фосфора(III): $2P + 3O_2 \xrightarrow{t^\circ} 2P_sO_2$;
 - галогенами (при избытке образуются галогениды фосфора(V), недостатке галогениды фосфора(III), исключение составляет йод I, с которым фосфор всегда образует йодид фосфора(III)): $2P + 5Cl_2 \rightarrow 2PCl_5$, $2P + 3Cl_2 \rightarrow 2PCl_3$, $2P + 3I_2 \rightarrow 2PI_3$;
 - серой (при избытке образуются сульфиды фосфора(V), недостатке сульфиды фосфора(III)): $2P+5S\to P_2S_5$, $2P+3S\to P_2S_3$;

- с водородом не реагирует (в отличие от азота, см. выше): $P + H_0 \longrightarrow$;
- взаимодействует с кислотами-окислителями (разбавленной и концентрированной азотной кислотой HNO $_3$, концентрированной серной кислотой $\mathrm{H}_2\mathrm{SO}_4$): $5\mathrm{HNO}_{3(\mathrm{конц.})}+$ + P \rightarrow $5\mathrm{NO}_2$ + HPO $_3$ + 2H $_2\mathrm{O}$, $5\mathrm{HNO}_{3(\mathrm{pas6.})}+$ 3P + 2H $_2\mathrm{O}$ \rightarrow $5\mathrm{NO}+3\mathrm{H}_3\mathrm{PO}_4$, $2\mathrm{P}+5\mathrm{H}_2\mathrm{SO}_4$ \rightarrow 2H $_3\mathrm{PO}_4$ + $5\mathrm{SO}_2$ + 2H $_2\mathrm{O}$;
- взаимодействует с растворами щелочей с образованием фосфина: $8P + 3Ba(OH)_2 + 6H_2O \xrightarrow{t^c} 2PH_3 + 3Ba(H_2PO_2)_2$.

Соединения фосфора. Степень окисления = +3

 \square Оксид фосфора(III) (P_2O_3 , или его наиболее устойчивая форма — димер P_4O_6) — твердое вещество белого цвета, ядовит, $t_{\rm n.n.}=24~{\rm ^{\circ}C}$. Относится к солеобразующим оксидам. Проявляет кислотные и восстановительные свойства.

Способы получения: медленное окисление фосфора в обедненной кислородом среде: $2P + 3O_2 \xrightarrow{t^2} 2P_2O_3$.

Свойства:

- взаимодействует с водой с образованием фосфористой кислоты H_3PO_3 : $P_4O_6+6H_2O \rightarrow 4H_3PO_4$;
- взаимодействует с основными оксидами: $P_4O_6+4BaO++2H_2O\to 4BaHPO_3$ (образование гидрофосфорита бария);
- взаимодействует с растворами щелочей: $P_4O_6+4Ca(OH)_2 \rightarrow CaHPO_3+2H_2O$ (образование гидрофосфорита кальция);
- восстанавливает соли малоактивных металлов до свободных металлов: $P_4O_6+4HgCl_2+10H_2O \rightarrow 4Hg+4H_3PO_4+8HCl;$
- реакция окисления: $P_4O_6 + 2O_2 \xrightarrow{t^\circ} P_4O_{10}$.
- □ Фосфористая кислота (H_3 PO₃) твердое бесцветное вещество, $t_{\text{пл.}}$ = 74 °C. Двухосновная кислота средней силы (реагирует с основаниями), проявляет слабые восстановительные свойства.

Способы получения: $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ (гидролиз хлорида фосфора).

Свойства:

- взаимодействует с основными оксидами: $H_3PO_3 + CaO \rightarrow CaHPO_3 + H_2O$ (образование гидрофосфорита кальция);
- взаимодействует с растворами щелочей: $H_3PO_3 + 2NaOH \rightarrow Na_2HPO_3 + 2H_2O$ (образование гидрофосфорита натрия);
- восстанавливает сулему (хлорид ртути(II) HgCl₂) до каломели (хлорида ртути(I) HgCl₂): H₃PO₃ + 2HgCl₂ + H₂O → Hg₂Cl₂ + H₃PO₄ + 2HCl;
- обесцвечивает кислый раствор перманганата калия: $5H_3PO_3 + 2KMnO_4 + 3H_2SO_4 \rightarrow 5H_3PO_4 + 2MnSO_4 + K_2SO_4 + 3H_2O;$
- безводная фосфористая кислота разлагается при нагревании: $4H_3PO_3 \xrightarrow{t^\circ} 3H_3PO_4 + PH_3$.

Соединения фосфора. Степень окисления = +5

□ Оксид фосфора(V) (P_2O_5 , или его наиболее устойчивая форма — димер P_4O_{10}) — твердое вещество без цвета и запаха, ядовит, не плавится, сублимирует при $t_{\rm суб}$. = 360 °C. Относится к солеобразующим оксидам. Проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами), является сильным водоотнимающим агентом.

Способы получения: горение фосфора в избытке кислорода: $4P + 5O_3 \xrightarrow{f^2} 2P_2O_5$.

- взаимодействует с водой на холоде с образование метафосфорной кислоты: $P_4O_{10} + 2H_2O \rightarrow 4HPO_3$;
- взаимодействует с водой при кипячении с образованием ортофосфорной кислоты: $P_4O_{10} + 6H_2O \xrightarrow{t^\circ} 4H_3PO_4$;
- взаимодействует с основными оксидами: $P_4O_{10} + 6CaO \rightarrow 2Ca_3(PO_4)_2$ (образование фосфата кальция);
- взаимодействует с растворами щелочей: $P_4O_{10} + 12NaOH \rightarrow 4Na_2PO_4 + 6H_3O$ (образование фосфата натрия);

- обладает водопоглощающим эффектом: $P_2O_5 + 2HNO_3 \rightarrow N_0O_5 + 2HPO_2$.
- \square Фосфорные кислоты (метафосфорная HPO $_3$, пирофосфорная $H_4P_2O_7$, ортофосфорная H_3PO_4). Наибольшее значение имеет ортофосфорная кислота бесцветное твердое вещество, $t_{\text{п.п.}}=425$ °C. Проявляет свойства средней кислоты (реагирует с основаниями, основными оксидами).

Способы получения:

- метафосфорной кислоты взаимодействие оксида фосфора с водой на холоде: P₂O₅ + H₂O → 2HPO₃;
- ортофосфорной кислоты кипячение метафосфорной кислоты: $HPO_3 + H_2O \rightarrow H_3PO_4$;
- $nupo\phi oc\phi op hoй кислоты$ нагревание ортофосфорной кислоты до t = 250 °C: $2H_3PO_4 \xrightarrow{t^\circ} H_4P_5O_7 + H_5O$;
- взаимодействие фосфата кальция с сильными кислотами: ${\rm Ca_3(PO_4)_9} + 3{\rm H_2SO_4} \to 2{\rm H_3PO_4} + 3{\rm CaSO_4};$
- взаимодействие фосфора с кислотами-окислителями: $5 {\rm HNO}_{3({\rm pagh}_3)} + 3 {\rm P} + 2 {\rm H}_2 {\rm O} \rightarrow 5 {\rm NO} + 3 {\rm H}_3 {\rm PO}_4$.

- взаимодействует с основными оксидами: $3{\rm ZnO} + 2{\rm H_3PO_4} \rightarrow {\rm Zn_3(PO_4)_2} + 3{\rm H_2O};$
- взаимодействует со щелочами с образованием средних (фосфатов) или кислых солей (гидро- и дигидрофосфатов): NaOH + $H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$ (образование дигидрофосфата натрия), $3NaOH + H_3PO_4 \rightarrow Na_3PO_4 + 3H_2O$ (образование фосфата натрия);
- взаимодействует с металлами, стоящими в ряду напряжений до водорода (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au): $3\text{Zn} + 2\text{H}_3\text{PO}_4 \rightarrow 2\text{n}_3(\text{PO}_4)_2 + 3\text{H}_2$;
- при взаимодействии с подкисленным раствором молибдата аммония образуется комплексное соединение сложного состава оранжевого цвета, выпадающее в оса-

док (качественная реакция на ортофосфорную кислоту): $12(NH_4)_2MoO_4 + 21HNO_3 + H_3PO_4 \rightarrow (NH_4)_3PMo_{12}O_{40} \cdot 6H_2O + 21NH_3O_3 + 6H_3O_4$

□ Соли фосфорной кислоты. Фосфаты (фосфат цинка Zn₃(PO₄)₂), гидрофосфаты (гидрофосфат натрия Na₂HPO₄) и дигидрофосфаты (дигидрофосфаты кальция Ca(H₂PO₄)₂). Дигидрофосфаты металлов как правило хорошо растворимы в воде, гидрофосфаты и фосфаты — плохо (за исключением щелочных металлов).

- гидролиз фосфатов (например, фосфата натрия), сокращенное ионное уравнение: $PO_4^{3^-} + H_2O \rightleftharpoons HPO_4^{2^-} + HO^-$ (среда сильнощелочная pH = 12,1, образующийся ион $HPO_4^{2^-}$ практически не диссоциирует: в уравнении $HPO_4^{2^-} \rightleftharpoons PO_4^{3^-} + H^+$ $K_{nuc} = 5 \cdot 10^{-13}$);
- гидролиз гидрофосфатов (например, гидрофосфата натрия Na_2HPO_4), сокращенное ионное уравнение: $HPO_4^2 + H_2O \rightleftharpoons H_2PO_4^- + OH^-$ (среда слабощелочная рH = 8,9, образующийся ион $H_2PO_4^-$ диссоциирует по уравнению $H_2PO_4^- \rightleftharpoons HPO_4^{2^-} + H^+$ ($K_{\text{дисс.}} = 6,2 \cdot 10^{-8}$) с образованием ионов водорода H^+ , частично нейтрализующих гидроксид-ионы OH^-);
- гидролиз дигидрофосфатов (например, дигидрофосфата натрия $\mathrm{Na_2H_2PO_4}$), сокращенное ионное уравнение: $\mathrm{H_2PO_4^+ + H_2O} \rightleftharpoons \mathrm{H_3PO_4} + \mathrm{OH^-}$ (среда слабокислая $\mathrm{pH} = 6,4$; образующаяся молекула фосфорной кислоты $\mathrm{H_3PO_4}$ диссоциирует по уравнению $\mathrm{H_3PO_4} \rightleftharpoons \mathrm{H_2PO_4^- + H^+}$ ($K_{\mathrm{дисc.}} = 7,5 \cdot 10^{-3}$) с образованием ионов водорода $\mathrm{H^+}$, с избытком нейтрализующих гидроксид-ионы $\mathrm{OH^-}$);
- при взаимодействии растворимых в воде фосфатов с солями серебра образуется осадок ярко-желтого цвета фосфат серебра Ag_3PO_4 (качественная реакция на фосфат-ионы PO_4^{3-}): $3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$.

Применение

Изготовление спичек (красный фосфор наносят на боковую поверхность коробка); фармацевтическая промышленность (используется для приготовления зубных цементов), быт (ортофосфорная кислота хорошо удаляет ржавчину); сельское хозяйство (соли фосфорной кислоты используются в качестве удобрений для сельскохозяйственных растений, например суперфосфат Ca(H₂PO₄),, преципитат CaHPO₄ · 2H₂O).

Сера (VIA-группа, III период)

Нахождение в природе

В свободном состоянии: в составе нефти и каменного угля; пирит ${\rm FeS_2}$, медный блеск CuS, гипс ${\rm CaSO_4\cdot 2H_2O}$, английская соль ${\rm MgSO_4\cdot 7H_2O}$.

Физические свойства

Аллотропные модификации: ромбическая (наиболее устойчивая), моноклинная и пластическая сера.

Ромбическая сера (общая формула S_8 , для удобства записывается просто S) — твердое вещество желтого цвета, плохо растворимое в воде, хорошо — в сероуглероде CS_2 ; $t_{\rm n.r.}=112,8\,^{\circ}C$.

Химические свойства

В химических соединениях сера проявляет следующие степени окисления: -2 (сероводород H_2S), 0 (простое вещество сера S), +4 (оксид серы(IV) SO_2), +6 (оксид серы(VI) SO_3).

Соединения серы. Степень окисления = -2

 \square Сероводород ($\mathrm{H}_2\mathrm{S}$) — газообразное вещество с характерным запахом тухлых яиц. Водный раствор (сероводородная кислота) проявляет свойства очень слабых кислот. Типичный восстановитель.

Способы получения:

- взаимодействие разбавленных минеральных кислот с сульфидами металлов: FeS + 2HCl → FeCl₂ + H₂S;
- взаимодействие сульфида алюминия с водой: ${\rm Al}_2{\rm S}_3 + 6{\rm H}_2{\rm O} \to 2{\rm Al}({\rm OH})_3 + 3{\rm H}_2{\rm S}.$

- взаимодействует с водой с образованием слабой сероводородной кислоты, диссоциирующей в две стадии: $H_2S + H_2O \rightarrow H_3O^+ + HS^-(K_{\text{днес.}} = 5 \cdot 10^{-8}), HS^- + H_2O \rightarrow H_3O^+ + S^{2-}(K_{\text{mag.}} = 1 \cdot 10^{-14});$
- взаимодействует с сильными (галогенами, перманганатом калия, азотной кислотой, кислородом) и со слабыми (сернистой кислотой, хлоридом железа(III)) окислителями:
 - сазотной кислотой: $\rm H_2S+8HNO_3 \xrightarrow{\ t^\circ \ } H_2SO_4+8NO_2+4H_2O;$
 - с бромной водой (происходит обесцвечивание раствора): $H_{o}S + Br_{o} \rightarrow 2HBr + S$;
 - с перманганатом калия (происходит обесцвечивание раствора): $5H_2S + 2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S + 8H_2O$;
 - с кислородом: $H_2S + 3O_2 \xrightarrow{t^\circ} 2SO_2 + 2H_2O$;
 - с сернистой кислотой: $2H_{9}S + H_{9}SO_{3} \rightarrow 3S + 3H_{9}O_{5}$
 - с хлоридом железа(III): $H_2S + 2FeCl_3 \rightarrow 2FeCl_2 + S + 2HCl_3$;
- сероводородная кислота реагирует:
 - с основаниями (образуются сульфиды и гидросульфиды): $H_2S+NaOH\to NaHS+H_2O,\ H_2S+2NaOH\to Na_2S+2H_2O;$
 - с основными оксидами (образуются сульфиды): $H_2S + Mg \rightarrow MgS + H_2O$;
 - с металлами (образуются сульфиды): $H_2S + Ba \rightarrow BaS + H_2$;
 - с солями тяжелых металлов (образуются нерастворимые сульфиды): $H_9S + CuSO_4 \rightarrow CuS + H_9SO_4$.
- □ Сульфиды непрозрачны, окрашены, большинство имеет металлический блеск; плохо растворимы в воде (за исключением, сульфидов аммония, щелочных и щелочноземельных металлов).

Свойства:

- реакция гидролиза: $Fe_2S_3 + 6H_2O \rightarrow 2Fe(OH)_3 + 3H_2S$ (необратимый гидролиз с образованием нерастворимого гидроксида железа(III) и газообразного сероводорода);
- взаимодействие сульфидов щелочных металлов со свободной серой при нагревании приводит к образованию полисульфидов: Na₂S+S^{to}→Na₂S₂;
- при взаимодействии с раствором, содержащим ионы свинца Pb^{2+} , выпадает осадок черного цвета (качественная реакция на сульфид-ионы S^{2-} и сероводород H_2S) $Na_2S + Pb(NO_3)_2 \rightarrow PbS + 2NaNO_3$.

Соединения серы. Степень окисления = 0

□ Cepa (S) — твердое вещество желтого либо коричневого цвета, химически активной становится только при нагревании (исключение: взаимодействие с ртутью и фтором происходит при комнатной температуре). Обладает как восстановительными, так и окислительными свойствами.

Способы получения:

- из руды (пирита): $FeS_2 \rightarrow FeS + S$;
- окисление сероводорода: $2H_2S + O_2 \rightarrow 2S + 2H_2O$ (при недостатке кислорода), $2H_2S + SO_2 \rightarrow 3S + 2H_2O$ (в составе смеси с оксидом серы(IV) в присутствии катализатора).

- взаимодействует с металлами с образованием сульфидов: $S + 2Na \xrightarrow{t^o} Na_oS$;
- взаимодействует с неметаллами:
 - кислородом (реакция горения): S + O $_2$ \rightarrow SO $_2$, 2S + 3O $_2$ \rightarrow 2SO $_3$ (образуется смесь оксидов(IV) и (VI));
 - водородом: $S + H_2 \xrightarrow{t^{\circ}} H_2 S$;
 - фосфором: $3S + 2P \xrightarrow{t^{\circ}} P_2S_3$;

- углеродом: $2S + C \xrightarrow{t^{\circ}} CS_2$;
- фтором: $S + 3F_2 \rightarrow SF_6$;
- взаимодействует с кислотами-окислителями (разбавленной и концентрированной азотной HNO $_3$, концентрированной серной H_2SO_4): $S+6HNO_{3(\text{конц.})} \xrightarrow{t^o} H_2SO_4 + +6NO_2 +2H_2O$, $S+2HNO_{3(\text{разб.})} \xrightarrow{t^o} H_2SO_4 +2NO$, $S+2H_2SO_{4(\text{конц.})} \xrightarrow{t^o} 3SO_2 +2H_2O$;
- взаимодействует с растворами щелочей с образованием сульфидов и сульфитов: $3S+6NaOH \rightarrow 2Na_2S+Na_2SO_3++3H_3O$.

Соединения серы. Степень окисления = +4

Оксид серы (IV) (SO_2) — газообразное вещество с резким запахом, проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами). Обладает как восстановительными, так и окислительными свойствами.

Способы получения:

- реакция горения серы или сероводорода: $S + O_2 \rightarrow SO_2$;
- взаимодействие тяжелых металлов с концентрированной серной кислотой: $\mathrm{Cu} + 2\mathrm{H_2SO_{4(конц.)}} \! \! \to \! \mathrm{CuSO_4} + \mathrm{SO_2} + \mathrm{H_2O};$
- из руды (пирита), промышленный способ получения: $4{
 m FeS_2} + 11{
 m O_2} \stackrel{t^\circ}{\longrightarrow} 2{
 m Fe_2O_3} + 8{
 m SO_2}.$

- взаимодействует с водой с образованием слабой сернистой кислоты, диссоциирующей в две стадии ($K_1=1,6\cdot 10^{-2},$ $K_2=6,3\cdot 10^{-8}$): $\mathrm{SO}_2+\mathrm{H}_2\mathrm{O}\to\mathrm{H}_2\mathrm{SO}_3$;
- взаимодействует с основаниями с образованием сульфитов: $\mathrm{SO_2} + \mathrm{2NaOH} \to \mathrm{Na_2SO_3} + \mathrm{H_2O}.$
- взаимодействует с основными оксидами с образованием сульфитов: $SO_2 + CaO \rightarrow CaSO_3;$
- взаимодействует с окислителями:

- кислородом: $2SO_2 + O_2 \rightleftharpoons 2SO_3$;
- перманганатом калия: $5{\rm SO}_2+2{\rm KMnO}_4+2{\rm H}_2{\rm O}\to 2{\rm H}_2{\rm SO}_4+2{\rm MnSO}_4+{\rm K}_2{\rm SO}_4;$
- хлором: SO₂ + Cl₂ + 2H₂O → H₂SO₄ + 2HCl;
- взаимодействует с восстановителями (например, с сероводородом): $2H_0S + SO_0 \rightarrow 3S + 2H_0O$.
- □ Сернистая кислота (H₂SO₃) крайне неустойчивая бесцветная жидкость, существует только в разбавленных водных растворах, в свободном состоянии не выделена; проявляет свойства слабой кислоты (реагирует с основаниями, основными оксидами). Обладает как восстановительными, так и окислительными свойствами.

Свойства:

- взаимодействует с избытком основания с образованием сульфитов: H₂SO₃ + 2NaOH → Na₂SO₃ + 2H₂O;
- взаимодействует с недостатком основания с образованием гидросульфитов: $H_9SO_3 + NaOH \rightarrow NaHSO_3 + H_9O$;
- взаимодействует с основными оксидами с образованием сульфитов: $H_2SO_3 + CaO \rightarrow CaSO_3 + H_2O;$
- взаимодействует с окислителями (например, с бромной водой происходит обесцвечивание раствора): $H_2SO_3 + H_2O \rightarrow H_2SO_4 + 2HBr$;
- взаимодействует с восстановителями (например, с сероводородом): $H_{o}SO_{3} + 2H_{o}S \rightarrow 3S + 3H_{o}O$.
- □ Сульфиты (соли сернистой кислоты) кристаллические вещества, плохо растворимы в воде (исключение: сульфиты аммония и щелочных металлов). Обладают как восстановительными, так и окислительными свойствами.

Свойства:

• взаимодействуют с сильными минеральными кислотами с выделением газообразного оксида серы(IV): $Na_2SO_3 + H_2SO_4 \xrightarrow{t^*} Na_2SO_4 + SO_2 + H_2O;$

- взаимодействуют с окислителями (например, с хлором): $Na_9SO_9 + Cl_9 + H_9O \rightarrow Na_9SO_4 + 2HCl;$
- взаимодействуют с восстановителями (например, с серой при нагревании с образованием тиосульфатов): $Na_2SO_3 + S \xrightarrow{t^\circ} Na_2S_2O_3$.

Соединения серы. Степень окисления = +6

 \square Оксид серы(VI) (SO₃) — бесцветная жидкость, $t_{\text{пл.}}=16.8$ °C, проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами). Обладает сильными окислительными свойствами.

Способы получения: каталитическое окисление оксида серы(IV): $2SO_2 + O_2 \xrightarrow{t^0, \text{ кат.}} 2SO_3$.

Свойства:

- взаимодействует с водой с образованием сильной двухосновной серной кислоты: $SO_3 + H_2O \rightarrow H_2SO_4$;
- взаимодействует с 100%-ной серной кислотой с образованием олеума: ${\rm SO_3} + {\rm H_2SO_4} {
 ightarrow} {\rm H_2S_2O_7};$
- взаимодействует со щелочами с образованием сульфатов: $SO_3 + 2NaOH \rightarrow Na_2SO_4 + H_2O;$
- взаимодействует с основными оксидами с образованием сульфатов: $SO_3 + CaO \rightarrow CaSO_4$;
- взаимодействует с восстановителями:
 - сероводородом: $H_2S + 3SO_3 \rightarrow 4SO_2 + H_2O$;
 - белым фосфором: $5\mathrm{SO_3} + 2\mathrm{P} \rightarrow 5\mathrm{SO_2} + \mathrm{P_2O_5}$.
- \square Серная кислота ($\mathrm{H_2SO_4}$) тяжелая маслянистая бесцветная жидкость, при попадании на кожу вызывает сильные химические ожоги. Проявляет свойства сильной кислоты (реагирует с основаниями, основными оксидами, металлами, солями). 70%-ную серную кислоту называют концентрированной. Обладает сильными окислительными свойствами.

Способы получения: трехстадийное превращение пирита (контактный способ, используется в промышленности):

 $4 {\rm FeS}_2 + 11 {\rm O}_2 \xrightarrow{t^c} 2 {\rm Fe}_2 {\rm O}_3 + 8 {\rm SO}_2$, $2 {\rm SO}_2 + {\rm O}_2 \rightleftarrows 2 {\rm SO}_3$, ${\rm SO}_3 + {\rm H}_2 {\rm SO}_4 \to {\rm H}_2 {\rm S}_2 {\rm O}_7$ (разбавлением олеума получают серную кислоту нужной концентрации).

- взаимодействует со щелочами с образованием сульфатов и гидросульфатов (при избытке кислоты): $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$, $H_2SO_4 + NaOH \rightarrow NaHSO_4 + H_2O$;
- взаимодействует с основными оксидами с образованием сульфатов: H₂SO₄ + CaO → CaSO₄ + H₂O;
- взаимодействует с солями: $H_2SO_4 + Na_2S \rightarrow H_2S + Na_2SO_4$ (выделение газообразного сероводорода);
- реакции дегидратации (в присутствии оксида фосфора(V) P_2O_5): $2H_2SO_4 + P_2O_5 \stackrel{t^o}{\longrightarrow} SO_3 + 2HPO_3$;
- разбавленная кислота взаимодействует с металлами, стоящими в ряду напряжений (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au) до водорода H, с выделением молекулярного водорода: $H_2SO_{4(pas6.)} + Mg \rightarrow MgSO_4 + H_2$;
- концентрированная кислота взаимодействует со всеми металлами (исключение: железо Fe, алюминий Al) с выделением различных продуктов (сероводород и сера с более активными металлами (Zn, Mg, Ca), оксид серы(IV) с менее активными металлами (Cu, Hg, Ag)): $2H_2SO_{4(\text{конц.})} + Cu \xrightarrow{t^c} SO_2 + CuSO_4 + 2H_2O$;
- концентрированная кислота взаимодействует с некоторыми неметаллами (серой S, фосфором P, углеродом C): $2H_2SO_{4(\text{конц.})} + S \to 3SO_2 + 2H_2O, 2H_2SO_{4(\text{конц.})} + C \to 2SO_2 + \\ + CO_2 + H_2O.$
- □ Сульфаты кристаллические вещества (как правило, белого цвета), большинство из которых растворимы в воде (исключение: малорастворимые сульфаты кальция CaSO₄ и свинца PbSO₄, плохорастворимый сульфат бария BaSO₄). Сульфаты, содержащие в своем составе кристаллическую воду, называются купоросами (медный купорос CuSO₄ · 5H₂O).

Свойства:

- реакция термического разложения сульфатов металлов, которые в зависимости от природы металла разлагаются по-разному: $Na_2SO_4 \xrightarrow{t^o}$ (сульфаты наиболее активных металлов плавятся, не разлагаясь), $ZnSO_4 \xrightarrow{t^o} ZnO + SO_3$ (сульфаты металлов средней активности разлагаются до оксидов соответствующих металлов), $Ag_2SO_4 \xrightarrow{t^o} 2Ag + SO_2 + O_2$ (сульфаты металлов, стоящих в ряду напряжений (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au) после H, разлагаются до своболных металлов):
- сульфаты щелочных металлов спекаются с углем: $Na_2SO_4 + 4C \xrightarrow{t^\circ} Na_0S + 4CO$;
- при взаимодействии с раствором, содержащим ионы бария $\mathrm{BaSO_4}$, выпадает осадок белого цвета сульфат бария $\mathrm{BaSO_4}$ (качественная реакция на сульфат-ионы $\mathrm{SO_4^2}$): $\mathrm{H_2SO_4} + \mathrm{BaCl_2} \to \mathrm{BaSO_4} + 2\mathrm{HCl}$.

Применение

Свободная сера: изготовлении резины, спичек, пороха; медицина (лечение кожных заболеваний); сельское хозяйство (борьба с вредителями). Сероводород: медицина (лечение кожных заболеваний и ревматизма). Оксид серы(IV): сельское хозяйство (борьба с вредителями), крупнотоннажное производство серной кислоты. Серная кислота: производство синтетических моющих средств, удобрений, лекарственных средств и различного рода пластмасс. Сульфаты: медицина (глауберова соль $\mathrm{Na_2SO_4} \cdot 10\mathrm{H_2O}$ — в качестве слабительного средства, сульфат кальция $\mathrm{CaSO_4} \cdot 2\mathrm{H_2O}$ — гипсовая повязка при переломах).

Углерод (IVA-группа, II период)

Нахождение в природе

В свободном состоянии: в виде алмаза и графита, в нефти, природном газе; в воздухе (0,03 % объема составляет углерод С); известняк, мрамор $CaCO_3$, доломит $CaCO_3 \cdot MgCO_3$.

Физические свойства

Аллотропные модификации: алмаз и графит. Алмаз обладает кристаллической решеткой и не проводит электрический ток; графит имеет сложную слоистую структуру, характеризуется электропроводностью. Природный углерод представлен тремя изотопами: ${}_{6}^{1}$ C, ${}_{6}^{1}$ C и ${}_{6}^{1}$ C.

Химические свойства

В химических соединениях углерод проявляет степени окисления: -4 (метан ${\rm CH_4}$), 0 (простое вещество углерод ${\rm C}$), +2 (оксид углерода(II) ${\rm CO_2}$).

Соединения углерода. Степень окисления = -4

 \square Метан (СН $_4$) — газообразное вещество без цвета и запаха, мало растворим в воде, сильный восстановитель.

Способы получения:

- взаимодействие безводного едкого натра с ледяной уксусной кислотой: ${\rm CH_3COOH} + 2{\rm NaOH} \xrightarrow{t^\circ} {\rm Na_2CO_3} + {\rm CH_4} + + {\rm H_2O};$
- из природных и нефтяных газов;
- взаимодействие угарного газа и молекулярного водорода при нагревании в присутствии катализатора: ${\rm CO} + 3{\rm H_2} \xrightarrow{t^*} {\rm CH_4} + {\rm H_2O}.$

- взаимодействует с хлором с образованием полихлорметанов: $\mathrm{CH_4} + \mathrm{Cl_2} \xrightarrow{h\nu} \mathrm{CH_3Cl} + \mathrm{HCl}$, $\mathrm{CH_3Cl} + \mathrm{Cl_2} \xrightarrow{h\nu} \mathrm{CH_2Cl_2} + \mathrm{HCl}$, $\mathrm{CH_2Cl_2} + \mathrm{HCl_3Cl_2} + \mathrm{Cl_2} \xrightarrow{h\nu} \mathrm{CHCl_3} + \mathrm{HCl}$, $\mathrm{CH_2} \xrightarrow{h\nu} \mathrm{CCl_4} + \mathrm{HCl}$;
- взаимодействует с кислородом: $\mathrm{CH_4} + \mathrm{O_2} \xrightarrow{t^\circ, \, \mathrm{kar.}} \mathrm{CH_2O} + \mathrm{O_2} \xrightarrow{t^\circ, \, \mathrm{kar.}} \mathrm{CH_2O} + \mathrm{H_2O}$ (частичное окисление идет с образованием формальдегида), $\mathrm{CH_4} + \mathrm{2O_2} \xrightarrow{t^\circ} \mathrm{CO_2} + \mathrm{2H_2O}$ (полное окисление идет с образованием углекислого газа);

Соединения углерода. Степень окисления = 0

□ Углерод (С) — существует во многих аллотропных модификациях (графит, алмаз, фуллерены, сажа, уголь); химически активным становится только при нагревании. Обладает как восстановительными, так и окислительными свойствами.

- взаимодействует с металлами с образованием карбидов: $4Al + 3C \xrightarrow{t^c} Al_4C_3$;
- взаимодействует с водородом с образованием метана: $2H_2 + C \xrightarrow{f^0} CH_4$;
- взаимодействие с недостатком кислорода с образованием оксида углерода(II): $O_2 + 2C \frac{t^\circ}{2} > 2CO;$
- взаимодействует с избытком кислорода с образованием оксида углерода(IV): O₂ + C — t° → CO₂;
- взаимодействует с галогенами (с фтором реагирует при обычной температуре, с хлором при нагревании): $2F_2 + C \rightarrow CF_4$, $2Cl_2 + C \rightarrow CCl_4$;
- взаимодействует с кремнием с образованием карборунда: $Si + C \xrightarrow{t^o} SiC$:
- взаимодействует с азотом: $N_2 + 2C \xrightarrow{t^\circ} C_2 N_2$;
- взаимодействует с кислотами-окислителями (концентрированными азотной HNO $_3$ и серной H $_2$ SO $_4$ кислотами): H_2 SO $_4$ + C $\xrightarrow{t^\circ}$ CO $_2$ + 2SO $_2$ + 2H $_2$ O, 3HNO $_3$ + 3C $\xrightarrow{t^\circ}$ 3CO $_2$ + 4NO + 2H $_2$ O;
- взаимодействует с оксидами активных металлов с образованием карбидов: ${\rm CaO} + 3{\rm C} \xrightarrow{t^\circ} {\rm CaC_2} + {\rm Co}$, $2{\rm Al_2O_3} + 9{\rm C} \xrightarrow{t^\circ} {\rm Al_4C_3} + 6{\rm Co}$;
- взаимодействует с оксидами тяжелых металлов с образованием свободных металлов: $CuO + C \xrightarrow{t^o} Cu + CO$.

Соединения углерода. Степень окисления = +2

□ Оксид углерода(II) (СО) — газообразное вещество без цвета и запаха, токсичен, плохо растворим в воде, проявляет свойства восстановителя. Относится к несолеобразующим оксилам.

Способы получения:

- взаимодействие солей муравьиной кислоты с серной кислотой при нагревании: $HCOONa + H_2SO_4 \xrightarrow{t^o} NaHSO_4 + CO + H_2O$;
- термическое разложение карбонилов железа: $Fe(CO)_5 \xrightarrow{t^o} 5CO + Fe$;
- взаимодействие углекислого газа с углеродом при повышенной температуре: $CO_2 + C \xrightarrow{f^2} 2CO$.

- взаимодействует с расплавом щелочи с образованием солей муравьиной кислоты: CO+NaOH—^{t°, p}→HCOONa;
- взаимодействует с хлором на свету в присутствии катализатора с образованием фосгена (сильное отравляющее вещество): $CO + Cl_2 \xrightarrow{hv} COCl_2$;
- реакция горения идет с образованием углекислого газа: $2\text{CO} + \text{O}_2 \xrightarrow{t^2} 2\text{CO}_2;$
- взаимодействует с некоторыми тяжелыми металлами с образованием летучих карбонилов: $5\text{CO} + \text{Fe} \xrightarrow{t^{\circ}, p} \rightarrow \text{Fe}(\text{CO})_5$;
- взаимодействует с оксидами некоторых тяжелых металлов с выделением свободного металла: ${\rm CO+FeO} \xrightarrow{t^o} {\rm Fe+CO}_2;$
- взаимодействует с парами воды с образованием углекислого газа и водорода: ${\rm CO} + {\rm H_2O} \xrightarrow{t^o} {\rm H_2} + {\rm CO_2};$
- взаимодействует с водородом при высоких температуре и давлении с образованию метилового спирта: ${\rm CO}+2{\rm H}_2$ $\stackrel{t^o}{\longrightarrow}{\rm CH}_3{\rm OH}$.

Соединения углерода. Степень окисления = +4

□ Оксид углерода(IV) (CO_2) — газообразное вещество без цвета и запаха, плохо растворим в воде, $t_{\mathrm{суб.}} = -78$ °C. Твердый оксид углерода называют «сухим» льдом. Проявляет свойства кислотных оксидов (реагирует с основаниями, основными оксидами). Относится к солеобразующим оксидам.

Способы получения:

- взаимодействие мела (мрамора, известняка) с сильными минеральными кислотами: $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$;
- термическое разложение известняка: $CaCO_3 \xrightarrow{t^\circ} CaO + + CO_{\circ}$.

- взаимодействует с основными оксидами с образованием карбонатов: CaO + CO₂ → CaCO₂;
- взаимодействует с основаниями:
 - сильными: 2KOH + CO $_2$ \rightarrow K $_2$ CO $_3$ + H $_2$ O (образование карбоната калия);
 - слабыми: $CO_2 + NH_3 + H_2O \rightarrow NH_4HCO_3$ (образование гидрокарбоната аммония);
 - аммиаком (при нагревании и высоком давлении образуется мочевина): $CO_2 + 2NH_3 \xrightarrow{t^\circ, \text{кат.}} NH_9 \longrightarrow C(O) \longrightarrow NH_9 + H_9O;$
- взаимодействует с магнием при высокой температуре: ${\rm CO_2} + 2{\rm Mg} \frac{t^\circ}{\sim} {\rm C} + 2{\rm MgO};$
- восстановление с водой приводит к образованию слабой угольной кислоты, диссоциирующей в две стадии ($K_1 = 4 \cdot 10^{-7}$, $K_2 = 5 \cdot 10^{-11}$): $\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \to \mathrm{H}_2\mathrm{CO}_3$, $\mathrm{H}_2\mathrm{CO}_3 \rightleftarrows \mathrm{H}^+ + \mathrm{HCO}_3$, $\mathrm{HCO}_3^- \rightleftarrows \mathrm{H}^+ + \mathrm{CO}_3^{2-}$.
- □ Угольная кислота (H₂CO₃) существует только в разбавленных растворах, так как при подкислении распадается на воду

и углекислый газ: ${
m H_2CO_3} \xrightarrow{
m H^+} {
m CO_2} + {
m H_2O}$; проявляет свойства слабой кислоты.

Свойства:

- взаимодействует с основными оксидами: CaO + ${
 m H_2CO_3} \rightarrow$ CaCO $_3$ + ${
 m H_2O}$;
- взаимодействует со щелочами приводит с образованием средних (карбонатов) или кислых (гидрокарбонатов) солей: $Ca(OH)_2 + 2H_2CO_3 \rightarrow Ca(HCO_3)_2 + 2H_2O$ (образование гидрокарбоната кальция), $2NaOH + H_2CO_3 \rightarrow Na_2CO_3 + 2H_2O$ (образование карбоната натрия);
- взаимодействует с солями более слабых кислот (HCN, H_2SiO_3): NaCN + $H_2CO_3 \rightarrow$ NaHCO $_3$ + HCN.
- \square Соли угольной кислоты. Карбонаты (например, карбонат натрия $\mathrm{Na_2CO_3}$), гидрокарбонаты (например, гидрокарбонат натрия $\mathrm{NaHCO_3}$). Как правило, гидрокарбонаты металлов хорошо растворимы в воде, карбонаты плохо (за исключением карбонатов щелочных металлов и аммония).

- гидролиз карбонатов (например, карбоната натрия Na_2CO_3): $Na_2CO_3 + H_2O \rightarrow NaHCO_3 + NaOH$ (щелочная среда);
- термическое разложение:
 - карбонаты щелочных металлов не разлагаются: $\mathrm{Na_2CO_3} \longrightarrow$;
 - гидрокарбонаты щелочных металлов разлагаются на карбонаты и угольную кислоту: $2\text{NaHCO}_3 \xrightarrow{t^\circ} \text{Na}_2\text{CO}_2 + \text{CO}_2 + \text{H}_2\text{O}$;
 - карбонаты и гидрокарбонаты аммония разлагаются на аммиак и угольную кислоту: $NH_4HCO_3 \xrightarrow{t^\circ} NH_2 + CO_2 + H_2O_3$;
 - карбонаты остальных металлов разлагаются на оксид соответствующего металла и углекислый газ: $MgCO_3 \xrightarrow{f^*} MgO + CO_2$, $CuCO_3 \xrightarrow{f^*} CuO + CO_3$;

• качественная реакция на карбонаты и гидрокарбонаты: $\operatorname{Ca}(\operatorname{OH})_2 + \operatorname{CO}_2 \to \operatorname{CaCO}_3 + \operatorname{H}_2\operatorname{O}$ (выделившийся в результате реакции карбонатов и гидрокарбонатов с кислотой углекислый газ $(\operatorname{CaCO}_3 + \operatorname{2Hcl} \to \operatorname{CaCl}_2 + \operatorname{H}_2\operatorname{O} + \operatorname{+CO}_2)$ вступает во взаимодействие с известковой водой (раствор гидроксида кальция $\operatorname{Ca}(\operatorname{OH})_2$), образуя осадок белого цвета CaCO_3).

Применение

Углекислый газ: в качестве хладоагента («сухой» лед), при получении соды (карбоната натрия ${\rm Na_2CO_3}$) и мочевины; карбонат кальция ${\rm CaCO_3}$: строительство.

Кислород (VIA-группа, II период)

Нахождение в природе

В воздухе (21 % объема составляет кислород O_2), воде H_2O , земной коре (47 % по массы приходится на кислород O_2).

Физические свойства

Кислород — газообразное вещество без цвета и запаха. Природный кислород представлен тремя изотопами: ${}^{16}_{8}$ О, ${}^{17}_{8}$ О и ${}^{18}_{8}$ О. Аллотропные модификации свободного кислорода: простые вещества кислород O_2 и озон O_3 .

Химические свойства

Как правило, в химических соединениях кислород проявляет степень окисления -2 (вода ${\rm H_2O}$). В простых веществах кислород находится в степени окисления 0. В пероксидах водорода и металлов (пероксид кальция ${\rm CaO_2}$) кислород представлен в степени окисления -1. Положительную степень окисления +2 проявляет в составе фторида кислорода ${\rm OF_2}$.

Соединения кислорода. Степень окисления = -2

 \square Вода ($\mathrm{H_2O}$) — жидкое вещество без цвета и запаха, $t_{\mathrm{кип.}} = 100\,^{\circ}\mathrm{C}$. Участвует в ОВР только либо с сильными окислителями, либо с сильными восстановителями.

- взаимодействует с активными металлами типичными восстановителями: $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$, $\text{Ca} + 2\text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + \text{H}_2$, $3\text{Fe} + 4\text{H}_2\text{O} \xrightarrow{t^o} \text{Fe}_3\text{O}_4 + 4\text{H}_2$;
- взаимодействует со фтором типичным окислителем: $2F_{2}+2H_{2}O\rightarrow4HF+O_{2};$
- термическое разложение: $2H_2O \xrightarrow{t^\circ} 2H_2 + O_2$;
- реакции гидратации:
 - с оксидами с образованием гидроксидов: $SO_3 + H_2O \rightarrow H_2SO_4, P_2O_5 + H_2O \rightarrow 2HPO_3, CaO + H_2O \rightarrow Ca(OH)_2;$
 - с органическими веществами: $C_2H_4 + H_2O \xrightarrow{H^+} CH_3CH_2OH$ (взаимодействие этилена с водой приводит к образованию этилового спирта), $C_2H_2 + H_2O \xrightarrow{Hg^{2+}} CH_3CHO$ (взаимодействие ацетилена с водой приводит к образованию ацетальдегида);
- реакции гидролиза:
 - минеральных солей: $PO_4^{3-} + H_2O \Longrightarrow HPO_4^{2-} + HO^{-}$ (щелочная среда, pH > 7), $Fe^{3+} + H_2O \Longrightarrow FeOH^{2+} + H^+$ (кислая среда, pH < 7);
 - карбидов металлов: $Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$;
 - алкоголятов металлов с образованием спиртов: $C_2H_5ONa+H_2O\to C_2H_5OH+NaOH;$
 - галогенпроизводных бензола с образованием фенолов: $C_6H_5Cl+H_2O \xrightarrow{t^\circ, \text{кат.}} C_6H_5OH+HCl;$
 - сложных эфиров с образованием карбоновых кислот и спиртов (реакция этерификации): $\mathrm{CH_3COOC_2H_5} + \mathrm{H_2O} \xrightarrow{t^\circ, H^\circ} \mathrm{CH_3COOH} + \mathrm{C_2H_5OH};$
 - полисахаридов с образованием моносахаридов: $(C_6H_{10}O_5)_n+nH_2O \xrightarrow{t^c,H^+} nC_6H_{12}O_6$ (в результате гидролиза крахмала получается α -глюкоза).

Соединения кислорода. Степень окисления = 0

□ **Кислород** (O_2) — бесцветный газ без вкуса и запаха, сильный окислитель.

Способы получения:

- термическое разложение перманганата калия $KMnO_4$: $2KMnO_3 {t^\circ} \times K_2MnO_4 + MnO_2 + O_2$;
- термическое разложение нитратов щелочных металлов: $2KNO_2 \stackrel{r^o}{\longrightarrow} 2KNO_2 + O_2;$
- превращения пероксидов водорода (нагревание в присутствии катализатора) и щелочных металлов (в присутствии углекислого газа CO_2): $2H_2O_2 \xrightarrow{\text{кат.}} 2H_2O + O_2$, $2Na_2O_2 + 2CO_2 \rightarrow 2Na_2CO_3 + O_2$;
- электролиз водных растворов щелочей либо солей кислородсодержащих кислот: $2CuSO_4 + 2H_2O_2 \xrightarrow{-3\pi/3} 2Cu + +O_2 + 2H_2SO_4$;
- термическое разложение бертолетовой соли $KClO_3$: $2KClO_3 \xrightarrow{t^\circ} 2KCl + 3O_2$.

- взаимодействует с неметаллами с образованием кислотных оксидов:
 - с серой S: $S + O_2 \xrightarrow{t^\circ} SO_2$;
 - с фосфором P: $4P + 5O_2 \xrightarrow{t^\circ} 2P_2O_5$;
 - с углеродом C (графит): $C + O_2 \xrightarrow{t^\circ} CO_2$;
- взаимодействует с металлами с образованием основных оксидов (исключение: калий К и натрий Na, реакция с которыми заканчивается образованием пероксидов);
 - с литием Li: $4\text{Li} + \text{O}_2 \xrightarrow{t^{\circ}} 2\text{Li}_2\text{O}$;
 - с медью Cu: $2Cu + O_2 \xrightarrow{t^\circ} CuO$;
 - с натрием Na: 2Na + $O_2 \xrightarrow{t^\circ}$ Na $_2$ O $_2$;
- взаимодействует с некоторыми сложными веществами:

- с метаном $\mathrm{CH_4}$: $\mathrm{CH_4} + \mathrm{O_2} \xrightarrow{t^\circ, \mathrm{кат.}} \mathrm{CH_2O} + \mathrm{H_2O}$ (частичное окисление идет с образованием формальдегида), $\mathrm{CH_4} + \mathrm{2O_2} \xrightarrow{t^\circ} \mathrm{CO_2} + \mathrm{2H_2O}$ (полное окисление идет с образованием углекислого газа);
- с аммиаком: $4NH_3 + 3O_2 \xrightarrow{t^o} 2N_2 + 6H_2O$ (реакция горения на воздухе), $4NH_3 + 5O_2 \xrightarrow{t^o, \text{Pt}} 4NO + 6H_2O$ (каталитическое окисление);
- с сероводородом: $H_2S+3O_2 \xrightarrow{t^\circ} 2SO_2 + 2H_2O$ (при избытке кислорода образуется оксид серы(IV)), $2H_2S+O_2 \xrightarrow{t^\circ} 2S+2H_2O$ (при недостатке кислорода образуется свободная сера);
- с азотсодержащими органическими соединениями с образованием свободного азота, углекислого газа и воды: $4\text{CH}_2\text{NH}_2 + 90_2 \rightarrow 4\text{CO}_2 + 2\text{N}_2 + 10\text{H}_2\text{O}$.

Применение

Кислород O_2 : металлургия (при выплавке чугуна и стали), медицина, для резки металлов (в смеси с ацетиленом). Озон O_3 : отбеливание тканей и обеззараживание воды.

Хлор (VIIA-группа, III период)

Нахождение в природе

Каменная соль NaCl, сильвинит KCl · NaCl, карналлит KCl · MgCl $_2.$

Физические свойства

Газообразное вещество желто-зеленого цвета с резким запахом. Природный хлор представлен двумя изотопами: $^{35}_{17}$ Cl и $^{37}_{17}$ Cl.

Химические свойства

В химических соединениях хлор проявляет следующие степени окисления: -1 (хлороводород HCl), 0 (простое вещество хлор Cl₂), +1 (хлорноватистая кислота HClO), +3 (хлористая кислота HClO₂), +5 (хлорноватая кислота HClO₃), +7 (хлорная кислота HClO₄).

Из всех кислородсодержащих соединений хлора наиболее устойчивые — соли кислородсодержащих кислот. В ряду кислород-

содержащих кислот с ростом степени окисления атома хлора сила кислоты возрастает; хлорная кислота HClO_4 (степень окисления = 7) — сильная кислота, а хлорноватистая кислота HClO (степень окисления = \pm 1) относится к очень слабым кислотам.

Соединения хлора. Степень окисления = -1

 \square Хлороводород (HCl) — газообразное вещество с резким запахом, хорошо растворим в воде. Водный раствор хлороводорода (соляная кислота) проявляет свойства сильных кислот.

Способы получения:

- взаимодействие хлора с водородом на свету: $H_0 + Cl_0 \xrightarrow{hv} 2HCl_1$;
- взаимодействие безводного хлорида натрия с концентрированной серной кислотой: $\mathrm{NaCl}_{(\mathrm{rn.})} + \mathrm{H_2SO}_{4(\mathrm{конц.})} \to \mathrm{HCl}_{(\mathrm{r)}} + \mathrm{NaHSO_4}.$

Свойства:

- взаимодействует с металлами, стоящими в ряду напряжений (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au) до водорода H: $2HCl + Zn \rightarrow ZnCl_2 + H_2$;
- взаимодействует с основными и амфотерными гидроксидами: $HCl + KOH \rightarrow KCl + H_2O$, $2HCl + Zn(OH)_2 \rightarrow ZnCl_2 + 2H_2O$;
- взаимодействует с основными и амфотерными оксидами: $2HCl + CaO \rightarrow CaCl_2 + H_2O$, $2HCl + ZnO \rightarrow ZnCl_2 + H_2O$;
- взаимодействует с солями (при условии, что продукты реакции малодиссоциирующие либо газообразные вещества): $2HCl + K_sCO_s \rightarrow 2KCl + H_sO + CO_s$;
- при взаимодействии с раствором, содержащим ионы серебра Ag+, выпадает осадок белого цвета хлорид серебра AgCl (качественная реакция на хлорид-ионы Cl $^-$): HCl + AgNO $_3$ \rightarrow AgCl $_{(ru)}$ + HNO $_3$.

Соединения хлора. Степень окисления = 0

Хлор (Cl_2) — желто-зеленый газ со специфическим запахом,
сильный окислитель.

Способы получения:

• электролиз раствора (расплава) хлорида натрия NaCl:

катод (-)
$$\longleftarrow$$
 Na⁺ + Cl⁻ \longrightarrow анод (+)
 H_2O H_2O

$$2H_2O + 2e^- = H_2 + 2OH^ 2CI^- = Cl_2 + 2e^-;$$

$$2\boldsymbol{H}_{2}\boldsymbol{O} + 2\boldsymbol{N}\boldsymbol{a}\boldsymbol{C}\boldsymbol{l} = \boldsymbol{H}_{2} + 2\boldsymbol{N}\boldsymbol{a}\boldsymbol{O}\boldsymbol{H} + \boldsymbol{C}\boldsymbol{l}_{2}$$

- воздействие концентрированной соляной кислоты HCl на сильные окислители:
 - на перманганат калия KMnO₄: 2KMnO₄ + 16HCl $\xrightarrow{t^{\circ}}$ 2KCl + 2MnO₂ + 5Cl₂ + 8H₂O;
 - на бертолетову соль $KClO_3$: $KClO_3 + 6HCl \xrightarrow{t^{\circ}} KCl + \frac{t^{\circ}}{2} KCl + 3Cl_2 + 3H_2O$.

- взаимодействует с металлами при высоких температурах с образованием хлоридов: $\operatorname{Cl}_2 + 2\operatorname{Na} \xrightarrow{t^\circ} 2\operatorname{NaCl};$
- при нагревании взаимодействует с неметаллами с образованием хлоридов:
 - с серой S: $Cl_2 + S \xrightarrow{t^\circ} SCl_2$;
 - с водородом на свету H_2 : $H_2 + Cl_2 \xrightarrow{h\nu} 2HCl$;
 - с фосфором P в зависимости от количества хлора могут образовываться различные продукты реакции: $2P + 5Cl_2 \rightarrow 2PCl_5$ (получение хлорида фосфора(V)), $2P + 3Cl_2 \rightarrow 2PCl_3$ (получение хлорида фосфора(III));
- взаимодействует с водой в две стадии с образованием атомарного кислорода [O]: $\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HCl} + \text{HClO},$ $\text{HClO} \xrightarrow{\text{hv}} \text{HCl} + [\text{O}];$
- взаимодействие с растворами щелочей зависит от температуры среды: $3Cl_2 + 6NaOH t^2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$

(при нагревании идет образование хлоридов и хлоратов), $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$ (на холоде образуются хлориды и гипохлориты);

- взаимодействует с бромидами и иодидами металлов с образованием молекулярных брома и йода соответственно: $\text{Cl}_2 + 2\text{NaBr} \rightarrow 2\text{NaCl} + \text{Br}_2$, $\text{Cl}_2 + 2\text{NaI} \rightarrow 2\text{NaCl} + \text{I}_3$;
- не реагирует с минеральными кислотами и фторидами: Cl₂ + NaF >>>;
- реакция хлорирования органических веществ: $Cl_2 + CH_4 \stackrel{hv}{\longrightarrow} CH_2Cl + HCl.$

Соединения хлора. Степень окисления = +1

 \square Оксид хлора(I) ($\operatorname{Cl_2O}$) — ядовитое газообразное вещество желтого цвета с резким запахом, хорошо растворимое в воде.

Способы получения:

- взаимодействие оксида ртути с хлором при низких температурах: $HgO + 2Cl_2 \rightarrow HgCl_2 + Cl_2O;$
- взаимодействие гипохлоритов щелочных металлов с углекислым газом: 2KClO + CO $_2$ \to Cl $_2O$ + K_2CO_3

Свойства

- взаимодействует с водой с образованием хлорноватистой кислоты: $\mathrm{Cl_2O} + \mathrm{H_2O} \rightarrow \mathrm{2HClO};$
- термическое разложение: $2Cl_2O \xrightarrow{t^\circ} 2Cl_2 + O_2$;
- взаимодействует со щелочами с образованием гипохлоритов: $\text{Cl}_9\text{O} + 2\text{KOH} \rightarrow 2\text{KClO} + \text{H}_9\text{O}$.
- □ Хлорноватистая кислота (HClO) слабая кислота, проявляет свойства окислителя.

Способы получения:

- растворение хлора в воде: $Cl_2 + H_2O \rightarrow HClO + HCl$;
- взаимодействие оксида хлора(I) с водой: $\mathrm{Cl_2O} + \mathrm{H_2O} \to 2\mathrm{HClO}$.

Свойства:

- взаимодействует со щелочью с образованием гипохлоритов: $HClO + KOH \rightarrow KClO + H_oO;$
- взаимодействует с оксидом фосфора(V): 2HClO + $+P_2O_5 \rightarrow Cl_2O + 2HPO_3;$
- соли хлорноватистой кислоты (гипохлориты) сильные окислители: $3\text{KClO} \xrightarrow{t^*} \text{KClO}_3 + 2\text{KCl}$ (реакция диспропорционирования гипохлорита калия).

Соединения хлора. Степень окисления = +3

Хлористая кислота (HClO ₂) — крайне неустойчивое соеди-
нение, разлагается даже в водном растворе: $4HClO_2 \rightarrow HCl +$
+ HClO3 + 2ClO2 + H2O.

Способы получения: взаимодействие солей хлористой кислоты (хлоритов) с кислотами: $Ba(ClO_2)_2 + H_2SO_4 \rightarrow 2HClO_2 + BaSO_{4(ra.)}$; хлориты проявляют свои окислительные свойства только в кислой среде, $t_{vun} = 203$ °C.

□ Оксид хлора(IV) (ClO_2) — газообразное вещество красно-желтого цвета с характерным запахом, $t_{\text{кип.}} = 9,7$ °С. Проявляет свойства кислотных оксидов; окислитель средней силы.

Способы получения:

- термическое разложение хлорноватой кислоты: $3HClO_3 \xrightarrow{t^\circ} HClO_4 + 2ClO_9 + H_9O;$
- взаимодействие хлоратов (солей хлорноватой кислоты) с кислотами: $3\text{KClO}_3 + 3\text{H}_2\text{SO}_4 \to \text{HClO}_4 + 2\text{ClO}_2 + 3\text{KHSO}_4 + \text{H}_2\text{O}$.

Свойства:

• взаимодействует с водой с образованием хлористой ${\rm HClO_2}$ и хлорноватой ${\rm HClO_3}$ кислот (хлористая кислота крайне неустойчива и быстро разлагается): ${\rm 2ClO_2} + {\rm H_2O} \rightarrow {\rm HClO_3} + {\rm HClO_2}$, ${\rm 5HClO_2} \rightarrow {\rm 3HClO_3} + {\rm Cl_2} + {\rm H_2O}$;

• взаимодействует со щелочами с образованием хлоратов и хлоритов: $2\text{ClO}_{\circ} + 2\text{KOH} \rightarrow \text{KClO}_{\circ} + \text{KClO}_{\circ} + \text{H}_{\circ}\text{O}$.

Соединения хлора. Степень окисления = +5

□ Хлорноватая кислота ($\mathrm{HClO_3}$) — устойчива только в разбавленных водных растворах. Проявляет свойства сильной кислоты; сильный окислитель. В концентрированных растворах быстро разлагается: $\mathrm{8HClO_3} \rightarrow \mathrm{4HClO_4} + \mathrm{2Cl_2} + \mathrm{43O_3} + \mathrm{2H_2O}$.

Способы получения: взаимодействие солей хлорноватой кислоты (хлоратов) с кислотами: $\mathrm{KClO_3} + \mathrm{HClO_4} \to \mathrm{HClO_3} + \mathrm{KClO_4}.$

Свойства:

- взаимодействует со щелочами с образованием хлоратов: ${\rm HClO_3} + {\rm KOH} \to {\rm KClO_3} + {\rm H_2O};$
- взаимодействует с восстановителями: $\mathrm{HClO_3} + 6\mathrm{HI} \to \mathrm{HCl} + 3\mathrm{I_2} + 3\mathrm{H_2O}.$
- □ Хлораты кристаллические вещества, устойчивые при комнатной температуре.

Свойства: термическое разложение в присутствии/отсутствии катализатора: $4\text{KClO}_3 \xrightarrow{t^\circ, \text{кат.}} 3\text{KClO}_4 + \text{KCl}, 2\text{KClO}_3 \xrightarrow{t^\circ, \text{кат.}} 2\text{KCl} + 3\text{O}_2$.

Соединения хлора. Степень окисления = +7

 \square Оксид хлора(VII) ($\mathrm{Cl_2O_7}$) — бесцветная маслянистая жидкость, $t_{\mathrm{кип.}}=82~^{\circ}\mathrm{C}$. Проявляет свойства кислотных оксидов; сильный окислитель.

Способы получения: взаимодействие солей хлорной кислоты (перхлоратов) с оксидом фосфора(V): $2KClO_4 + P_2O_5 \xrightarrow{t^\circ} Cl_2O_7 + 2KPO_3$.

- взаимодействует с водой с образованием хлорной кислоты $HClO_4$: $Cl_2O_7 + H_2O \rightarrow 2HClO_4$;
- реакция термического разложения: $2\text{Cl}_2\text{O}_7 \xrightarrow{t^\circ} 2\text{Cl}_2 + +7\text{O}_2$.

 \square Хлорная кислота (HClO $_4$) — летучая жидкость, $t_{\text{кип.}} = 203\,^{\circ}\mathrm{C}$. Проявляет свойства сильной кислоты; сильный окислитель. Безводная хлорная кислота взрывоопасна.

Способы получения: взаимодействие солей хлорной кислоты (перхлоратов) с концентрированной серной кислотой: $\mathrm{KClO_4} + + \mathrm{H_2SO_4} \rightarrow \mathrm{HClO_{4(r)}} + \mathrm{KHSO_4}$.

Свойства:

- взаимодействует со щелочами с образованием перхлоратов: $HClO_4 + NaOH \rightarrow NaClO_4 + H_9O;$
- взаимодействует с активными металлами: $2HClO_4 + 2Na \rightarrow 2NaClO_4 + H_5$;
- взаимодействует с основными оксидами: $2HClO_4 + 2NaO \rightarrow 2NaClO_4 + H_2O;$
- взаимодействует с восстановителями: $HClO_4 + 4SO_2 + 4H_9O \rightarrow HCl + 4H_9SO_4$.

Применение

Хлор: изготовление пластмасс, органических растворителей (хлороформ), хлорной извести, ядохимикатов (ДДТ) и соляной кислоты. Перхлораты: производство взрывчатых веществ.

Водород (ІА-группа, І период)

Нахождение в природе

Космос (более половины космической материи приходится на водород H_{ν}), вода, нефть, различные минералы.

Физические свойства

Газообразное вещество без цвета и запаха, $t_{\rm кип.}=-252,8\,^{\circ}{\rm C}$. Природный хлор представлен тремя изотопами: протий $_1^1{\rm H}$, дейтерий $_1^2{\rm H}$ и тритий $_1^3{\rm H}$.

Химические свойства

В химических соединениях водород проявляет следующие степени окисления: -1 (гидрид кальция ${\rm CaH_2}$), 0 (простое вещество водород ${\rm H_2}$) +1 (вода ${\rm H_2O}$, пероксид водорода ${\rm H_2O_2}$).

Соединения водорода. Степень окисления = -1

 \square Гидрид кальция (CaH $_2$) — кристаллическое вещество белого цвета. В ОВР выступает в качестве сильного восстановителя.

Способы получения: взаимодействие кальция с водородом при высоких температурах: $Ca + H_2 \xrightarrow{t^\circ} CaH_2$.

Свойства:

- взаимодействует с водой с образованием гидроксида кальция и водорода: $CaH_0 + 2H_0O \rightarrow Ca(OH)_0 + 2H_0$;
- взаимодействует с кислотой с образованием соли и водорода: ${\rm CaH_2 + 2HCl} \rightarrow {\rm CaCl_2 + 2H_2};$
- взаимодействует с окислителями: $CaH_0 + O_0 \rightarrow CaO + H_0O$.

Соединения водорода. Степень окисления = 0

□ Водород (\mathbf{H}_2) — бесцветный газ без вкуса и запаха, хорошо растворим во многих тяжелых металлах (особенно в палладии Pd). Проявляет свойства как окислителя, так и восстановителя (последнее более характерно). Как правило, вступает в реакции в присутствии катализаторов (никеля Ni, платины Pt).

Способы получения:

- взаимодействие минеральных разбавленных кислот (кроме азотной HNO_3) с металлами, стоящими в ряду напряжений (Li, K, Ba, Ca, Na, Mg, Al, Zn, Cr, Fe, Ni, Pb, H, Cu, Ag, Hg, Pt, Au) до H: $2HCl + Zn \rightarrow ZnCl_2 + H_2$;
- взаимодействие щелочных либо щелочноземельных металлов с водой: $2Na + 2H_2O \rightarrow 2NaOH + H_3$;
- электролиз разбавленных растворов щелочей, серной кислоты или хлоридов щелочных металлов:

NaCl
$$\text{катод (-)} \longleftarrow \text{Na}^+ + \text{Cl}^- \longrightarrow \text{анод (+)}$$

$$\text{H}_2\text{O} \qquad \qquad \text{H}_2\text{O}$$

$$2\text{H}_2\text{O} + 2e^- = \text{H}_2 + 2\text{OH}^- \qquad 2\text{Cl}^- = \text{Cl}_2 + 2e^- \text{;}$$

$$2\text{H}_2\text{O} + 2\text{NaCl} = \text{H}_2 + 2\text{NaOH} + \text{Cl}_2$$

- взаимодействие кокса и воды при высоких температурах: $C + H_2O \xrightarrow{t^\circ} CO + H_3$;
- взаимодействие метана, основного компонента природного газа, с кислородом в присутствии водяного пара: $2CH_4 + 2H_9O + O_9 \xrightarrow{f^2} 2CO_9 + 6H_9$;
- взаимодействие алюминия либо цинка со щелочью: $2Al + 2NaOH + 2H_0O \rightarrow 2NaAlO_0 + 3H_0$.

- проявляет окислительные свойства и взаимодействует с активными (щелочными и щелочноземельными) металлами с образованием гидридов металлов: $H_2 + 2Na \rightarrow 2NaH$, $H_2 + Ca \rightarrow CaH_2$;
- проявляет восстановительные свойства и взаимодействует со следующими веществами;
 - с кислородом O_2 (смесь 2 л водорода и 1 л кислорода называется «гремучим газом») при поджигании со взрывом: $2H_0 + O_0 \rightarrow 2H_0O_0$;
 - с серой S при нагревании с образованием сульфида водорода: $H_2 + S \xrightarrow{t^\circ} H_2 S;$
 - с хлором Cl при поджигании с образованием хлороводорода: $H_{\circ}+Cl_{\circ}\rightarrow 2HCl;$
 - с фтором F при обычных условиях с образованием фтороводорода: $H_2+F_2\to 2HF;$
 - с азотом N_2 в жестких условиях с образованием аммиака: $3H_2+N_2\xrightarrow{t^2,p}2NH_3$;
- взаимодействует с оксидами металлов с образованием свободных металлов: $H_2 + CuO \xrightarrow{\iota^o} Cu + H_2O;$
- взаимодействует с оксидом углерода в жестких температурных условиях с образованием метанола CH_3OH : $H_2 + CO \xrightarrow{t^0, p} CH_3OH_6$;
- взаимодействует с непредельными органическими соединениями (реакция гидрирования): $2H_2 + C_2H_4 \xrightarrow{t^*, \text{кат.}} C_2H_6$ (в результате гидрирования этилена получается этан).

Соединения водорода. Степень окисления = +1

□ Пероксид водорода (H_2O_2) — бесцветное жидкое вещество, $t_{\text{кип.}} = 1502\,^{\circ}\text{C}$. Водные растворы пероксида водорода (обычно используются 3- и 30 %-ные растворы) проявляют свойства очень слабой кислоты. В ОВР выступает в качестве окислителя и восстановителя.

Способы получения:

 окисление изопропилового спирта в присутствии катализатора;

• воздействие сильной соляной кислоты на пероксид бария: ${\rm BaO_2} + {\rm 2HCl} \to {\rm H_2O_2} + {\rm BaCl_2}.$

Свойства:

- диссоциация пероксида водорода по типу слабой кислоты $(K_{\text{nuc.}}=1,5\cdot 10^{-12})$: $H_2O_2 \rightleftharpoons H^+ + HO_2^-$;
- взаимодействует с основаниями: $H_2O_2 + 2NaOH \rightarrow Na_2O_2 + 2H_2O;$
- разлагается на свету или в присутствии катализатора на воду и кислород: $2H_2O_2 \stackrel{t^o}{=} 2H_2O + O_2$;
- * как окислитель взаимодействует с иодидами металлов: $H_2O_2 + 2KI \to I_2 + 2KOH;$
- * как восстановитель взаимодействует с перманганатом калия в кислой среде: $5{\rm H_2O_2} + 2{\rm KMnO_4} + 3{\rm H_2SO_4} \rightarrow 2{\rm MnSO_4} + 5{\rm O_2} + {\rm K_2SO_4} + 8{\rm H_2O}$.

Применение

Металлургия (получение металлов из их оксидов, для резки металлов), пищевая промышленность (получение твердых жиров), для получения аммиака, метанола. Водород рассматривается как альтернатива нефтяному топливу. Жидкий водород — ракетное топливо; раствор пероксида водорода — дезинфицирующее средство.

Благородные газы (VIII группа)

Представители

7 элементов: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn, унуноктий Uuo.

Нахождение в природе

Благородные, или инертные, газы присутствуют в воздухе (аргон Ar — самый распространенный инертный газ), в некоторых минералах, морской воде, а также в атмосферах некоторых планет. Гелий наряду с водородом входит в состав звезд.

Физические свойства

Газообразные вещества без цвета и запаха.

Получение

Фракционная перегонка воздуха.

Химические свойства

большую химическую активность проявляет ксенон Xe, наименьшую — гелий He и неон Ne: $Xe+F_2 \xrightarrow{t^o} XeF_2$ (получение фторида ксенона(II) при нагревании);
известно несколько соединений инертных газов, в которых они проявляет следующие степени окисления: $+1$ (гексафторплатинат ксенона Xe[PtF $_6$]), $+2$ (фторид ксенона(II) XeF $_2$), фторид радона(II) RnF $_2$), $+4$ (фторид ксенона(IV) XeF $_4$), $+6$ (оксид ксенона(VI) XeO $_3$, фторид ксенона(VI) XeF $_6$), $+8$ (оксид ксенона(VIII) XeO $_4$);
соединения инертных газов проявляют окислительные свойства, причем с возрастание степени окисления атома элемента VIIIA-группы окислительная способность увеличивается: $XeF_4 + Pt \rightarrow PtF_4 + Xe$ (восстановление фторида ксенона(IV) до ксенона металлической платиной), $XeF_4 + 2H_2 \rightarrow 4HF + Xe$

□ Инертные газы — химически неактивные вещества; наи-

Применение

ным водородом).

Инертные газы — в качестве хладагентов; гелий — в хроматографии.

(восстановление фторида ксенона(IV) до ксенона молекуляр-

Раздел III

Органическая химия

Раздел III. Органическая химия

Основные понятия

Органическая химия — раздел химии, изучающий химию углеводородов и их производных.

Углеводороды — органические соединения, молекулы которых состоят из атомов углерода С и водорода Н: этан C_2H_6 , бензол C_6H_6 , ацетилен C_9H_9 .

Производные углеводородов — органические соединения, образованные в результате замещения одного или несколько атомов водорода H на другие атомы или группы атомов, называемые функциональными группами. Примеры производных углеводородов — галогенпроизводные C_2H_5Cl , спирты C_2H_5OH , $C_6H_5NH_2$.

Теория химического строения органических соединений, разработанная А. М. Бутлеровым в 1858—1861 годах, основана на следующих принципах.

- Валентность атомов определяет химическое строение органических соединений. Описываются органические вещества структурными либо эмпирическими формулами.
- $\hfill \Box$ Если структурная формула характеризует химическое строение органического вещества, то по эмпирической формуле

соответственно.

□ Атомы углерода С последовательно соединяются друг с другом, формируя углеродный скелет (цепь). В зависимости от наличия первичных (связан с одним атомом углерода С), вторичных (связан с двумя атомами углерода С), третичных (связан с тремя атомами углерода С), четвертичных (связан с четырьмя атомами углерода С) углеродные скелеты разделяют на следующие:

2,4-диметилпентан

• прямые: гептан
$$H_3$$
С С H_3 ; • разветвленные: 4-изопропилгептан H_3 С С H_3

$${
m H_{3}C}$$
 С ${
m CH_{3}};$ ${
m \cdot}$ замкнутые: циклогептан

Свойства органических веществ обуславливает не только состав, но и взаимное расположение атомов в молекуле. Изомеры вещества с одинаковым эмпирическим составом, но различным строение молекул.

Виды изомерии

□ Структурная изомерия:

изомерия положения кратной связи:

$$H_3C$$
 CH_3 CH_3 H_3C CH_3 ;

• изомерия положения функциональной группы:

$$\begin{array}{c} Cl & Cl \\ H_3C & \\ \hline \\ 2\text{-xhodrentah} & CH_3 & \\ \hline \end{array} \\ \begin{array}{c} C_7H_{15}Cl \\ \hline \\ 4\text{-xhodrentah} & \\ \hline \end{array} \\ \begin{array}{c} CH_3 \\ \hline \end{array}$$

□ Межклассовая изомерия:

• альдегиды и кетоны:

$$H_3C$$
 H_3C C_3H_6O H_3C CH_3 CH_3

• карбоновые кислоты и сложные эфиры:

• предельные одноатомные спирты и простые эфиры:

$$H_3$$
С OCH G_3 Н $_3$ С OCH G_3 ; пропанол-1 метилэтиловый эфир

• алкины и алкадиены:

$$C_4P_6$$
 утин-2 бутадиен-1,3

• алкены и циклоалканы:

$$_{\rm H_3C}$$
 С $_{\rm GH_{12}}$ циклогексан .

□ Геометрическая изомерия:

$$\begin{array}{c|c} H & H \\ & & \\ H_3C & CH_3 \\ & \text{цис-бутен-2} \end{array} \qquad \begin{array}{c} H_3C & H \\ & & \\ H & CH_3 \\ & \text{транс-бутен-2} \end{array}$$

СНО
$$H$$
 — ОН HO — H — ОН HO — H — ОН HO — H — ОН H — ОН H — H —

Химические свойства определяются взаимным влиянием атомов или группы атомов друг на друга в молекуле органического вещества:

 \square если R =—OH, —OR, —NH $_2$, — C_6H_5 , — C_nH_{2n+1} , —Hal (то есть R — заместитель I рода), то замещение водорода в бензольном кольце происходит в орто- и параположениях:

(см. «Арены»);

 \square если $R = -NH_2$, —СООН, —СНО, —СN (то есть R —заместитель II рода), то замещение водорода в бензольном кольце идет в метаположении:

$$\begin{array}{c}
R \\
+ Cl_2 \xrightarrow{AlCl_3} \\
\end{array}$$
 (см. «Арены»);

 взаимодействие бензола с галогенами приводит к замещению только одного атома водорода;

$$^{\rm H}$$
 + $^{\rm Cl}_2$ $\xrightarrow{^{\rm AlCl}_3}$ + $^{\rm HCl}$ (см. «Арены»);

наличие гидроксильной группы у атома углерода С бензольного кольца способствует более полному замещению атомов водорода Н на галогены;

$$\begin{array}{c} \text{OH} \\ + 3\text{Br}_2 \end{array} \longrightarrow \begin{array}{c} \text{OH} \\ \text{Br} \\ \end{array} + 3\text{HBr}$$

(см. «Фенолы»);

 наличие карбоксильной группы в молекулах карбоновых кислот облегчает замещение по радикальному механизму атома водорода у α-углеродного атома:

$$\begin{array}{c} H \\ H_3C - \begin{matrix} C \\ C \\ H \end{matrix} \\ C - COOH \\ \begin{matrix} + \end{matrix} \\ Cl_2 \end{matrix} \xrightarrow{PCl_5} \begin{matrix} Cl_5 \\ hv, t^\circ \end{matrix} \rightarrow \begin{matrix} Cl_5 \\ H_3C - \begin{matrix} C \\ C \\ H \end{matrix} \\ \begin{matrix} + \end{matrix} \\ C - \begin{matrix} COOH \end{matrix} \\ \begin{matrix} + \end{matrix} \\ HCl_5 \end{matrix}$$

(см. «Карбоновые кислоты»);

 в отличие от спиртов, в молекулах которых гидроксильная группа связана с углеводородным радикалом, фенолы взаимодействуют со щелочами:

 $\Box\,$ спирты не взаимодействуют со щелочами: C $_2H_5OH+NaOH$ \longrightarrow реакция не идет.

Гомологические ряды — совокупность органических соединений, в которой каждый последующий член отличается от предыдущего на CH_2 группу. Например, простейшие представители неразветвленных алканов: метан CH_4 , этан $\mathrm{C}_2\mathrm{H}_6$, пропан $\mathrm{C}_3\mathrm{H}_6$, бутан $\mathrm{C}_4\mathrm{H}_{10}$, пентан $\mathrm{C}_5\mathrm{H}_{12}$.

Типы органических реакций

По числу и составу реагентов и продуктов реакции выделяют следующие реакции.

- \square Реакция замещения: $2C_2H_5OH + 2K \rightarrow 2C_2H_5OK + H_2$.
- □ Реакция отщепления:
 - дегидратация спиртов:

$$R^{OH} + HO$$
 $R_1 \xrightarrow{H_2SO_4, 140 \, {}^{\circ}C} R_1 + H_2O$ (см. «Спирты»);

• дегидрирование алканов:

$$_{\rm H_3C}$$
 $\xrightarrow{\rm CH_3}$ $\xrightarrow{\it t^{\circ}}$ $_{\rm H_2C}$ \approx $^{\rm CH_2}$ + $_{\rm H_2}$ (см. «Алкены»).

- □ Реакция присоединения:
 - гидрирование алкенов:

$$\mathbf{R} \overset{\mathbf{H}}{\underset{\mathbf{C}}{\triangleright}} \mathbf{R}' \quad + \ \mathbf{H}_2 \quad \xrightarrow{\text{Kat.}} \quad \mathbf{R} \overset{\mathbf{H}_2}{\underset{\mathbf{C}}{\triangleright}} \mathbf{R}'$$

(см. «Алкены»);

• гидратация алкенов:

$$_{\rm H_2C}$$
 $\stackrel{\rm CH_2}{=}$ $_{\rm H_2O}$ $\stackrel{\rm H^+}{=}$ $_{\rm H_3C}$ $\stackrel{\rm CH_2OH}{=}$ (см. «Алкены»);

• гидрирование фенола:

ОН
$$+$$
 $3\mathrm{H}_2\mathrm{O}$ $\xrightarrow{\mathrm{Ni},\,t^\circ,\,p}$ (см. «Фенолы»).

□ Реакция разложения: $CH_4 \xrightarrow{1000\,^{\circ}C} C + 2H_2$ (крекинг алканов, см. «Алканы»).

□ Реакция изомеризации:

(изомеризация алканов, см. «Алканы»).

□ Реакция окисления:

- полное окисление (горение) спиртов: $C_2H_5OH + 3O_2 \xrightarrow{t^{\circ}} 2CO + 3H_2O$ (см. «Спирты»);
- в результате частичного окисления вторичных спиртов образуются кетоны;

$$\begin{array}{c} OH \\ H_3C \searrow CH \\ CH_2 \end{array} \xrightarrow{CCH_3} \begin{array}{c} OH \\ H_3C \searrow CH_3 \end{array} \xrightarrow{CC} CH_3 + 3H_2O \\ (CM. *CHIPTEI*). \end{array}$$

□ Реакция полимеризации:

$$n\left(\begin{array}{c} F_2C \stackrel{\text{CF}_2}{=} \right) \xrightarrow{\qquad} \left(\begin{array}{c} F_2 \\ C \\ F_2 \end{array}\right)_n$$

(соединения с кратными связями склонны вступать в реакции полимеризации, см. «Алкены»).

По способу разрыва ковалентных связей в молекулах выделяют следующие реакции.

- □ Реакции, протекающие со свободнорадикальным разрывом связи:
 - реакции, протекающие с образованием полихлорметанов:

$$\begin{split} \operatorname{CH_4} + \operatorname{Cl_2} & \xrightarrow{-h\nu} \operatorname{CH_3Cl} + \operatorname{HCl} \\ \operatorname{CH_3Cl} + \operatorname{Cl_2} & \xrightarrow{-h\nu} \operatorname{CH_2Cl_2} + \operatorname{HCl} \\ \operatorname{CH_2Cl_2} + \operatorname{Cl_2} & \xrightarrow{-h\nu} \operatorname{CHCl_3} + \operatorname{HCl} \end{split}$$

$$\begin{array}{c} \mathrm{CHCl_3} + \mathrm{Cl_2} \xrightarrow{hv} \mathrm{CCl_4} + \mathrm{HCl}\,(\mathrm{cm.}\,\,\mathrm{«Алканы»});\\ \mathrm{CH_3} & \mathrm{CH_2Cl} \\ \\ \end{array} \\ + \mathrm{Cl_2} \xrightarrow{hv} & + \mathrm{HCl}\,(\mathrm{cm.}\,\,\mathrm{«Арены»}). \end{array}$$

□ Реакции, протекающие с ионным разрывом связи:

$$\cdot R - C + R_1OH \xrightarrow{H_2SO_4} R - C + H_2O$$

(см. «Карбоновые кислоты»);

• $\mathrm{CH_3CH_2Cl} + \mathrm{NaCN} \rightarrow \mathrm{CH_3CH_2CN} + \mathrm{NaCl}$ (см. «Галогенпроизводные углеводородов»).

Классификация органических соединений

По строению углеводородного радикала

□ Ациклические:

- предельные: этан C_2H_6 , этиловый спирт C_2H_5OH , метиламин CH_3NH_2 , хлорэтан C_2H_5Cl ;
- непредельные: пропилен H_3C CH_2 , ацетилен HC CH_2 , бутадиен-1,3 H_2C CH_2 .

□ Циклические:

• карбоциклические: бензол , фенол , анилин

OH

$$^{
m NH_2}$$
, циклогексан ;

• гетероциклические: фуран , тиофен , пир

рол
$$\left(\begin{array}{c} H \\ I \\ N \\ \end{array}\right)$$
, пиридин $\left(\begin{array}{c} N \\ N \\ \end{array}\right)$, имидазол $\left(\begin{array}{c} H \\ I \\ N \\ \end{array}\right)$

По функциональным группам

- □ Аминогруппа NH_2 . Класс первичные амины: метиламин CH_3NH_2 , анилин $C_6H_5NH_2$.
- $\ \square$ Нитрогруппа NO $_2$. Класс нитросоединения: $\rm C_6H_5NO_2$, нитрометан $\rm CH_3NO_2$.
- \Box Карбоксильная группа СООН. Класс карбоновые кисо

лоты: уксусная кислота H_3C OH , о-фталевая кислота

□ Аминогруппа — NH₂ и карбоксильная группа — COOH.

Класс — аминокислоты: глицин H_2 С — OH , глутам OH

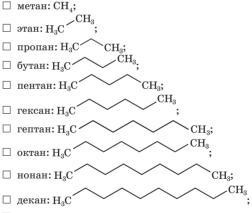
$$\stackrel{O}{\sim} \stackrel{H_2}{\sim} \stackrel{H_2}{\sim} \stackrel{H_2}{\sim} \stackrel{N}{\sim} \stackrel{O}{\sim} \stackrel{O}{\sim$$

□ Карбонильная С=О и альдегидная С=О группы. Класс — H

кетоны и альдегиды соответственно: метаналь \mathbf{H} — \mathbf{C} и аце-

 \Box Гидроксильная группа — ОН. Класс — спирты и фенолы: ОН $\begin{tabular}{l} OH \\ \hline \end{tabular}$ этиловый спирт C_2H_5OH , фенол

Предельные алифатические углеводороды


Алканы

Алканы — углеводороды, молекулы которых содержат только одинарные С—С связи (σ -связи), атомы углерода С находятся в состоянии sp^3 -гибридизации. Состав алканов характеризуется общей формулой С $_n$ Н $_{2n+2}$, где n—число атомов С в молекуле.

Алкилами (обозначают R) принято называть остатки молекул алканов, полученных при замещении атомов водорода H на другие атомы (группы атомов).

Некоторые представители класса

Алканы нормального, то есть неразветвленного, строения (гомологический ряд):

Получение

В промышленности насыщенные углеводороды получают из продуктов перегонки нефти, а также в результате реакций гидрогенизации бурых углей (№ 1), оксида углерода(II) (№ 2), непредельных углеводородов: алкенов ($\mathbb M$ 3) и алкинов ($\mathbb M$ 4), в присутствии катализаторов (Fe, Co, Ni) при высоких температуре и давлении: $C + H_2 \xrightarrow{p,t^o, Fe} C_n H_{2n+2}$ ($\mathbb M$ 1); $CO + H_2 \xrightarrow{p,t^o, Co, \mathbb N} C_n H_{2n+2}$ ($\mathbb M$ 2);

- \square сплавление карбоновых кислот со щелочами: R—COONa + NaOH $\xrightarrow{t^\circ}$ R—H + Na₂CO₃;
- □ взаимодействие галогеналканов с металлическим натрием (реакция Вюрца):

Химические свойства

Алканы относятся к малоактивным веществам. Не случайно их называют *парафинами* (от лат. *parum affinis* — «мало сродства»). Характерны реакции замещения и окисления (под воздействием высоких температур и ультрафиолета).

□ Реакция замещения:

 радикальная цепная реакция идет с образованием полихлорметанов при высоких температурах и облучении светом:

$$\begin{split} \operatorname{CH}_4 + \operatorname{Cl}_2 & \xrightarrow{h\nu} \operatorname{CH}_3 \operatorname{Cl} + \operatorname{HCl}, \\ \operatorname{CH}_3 \operatorname{Cl} + \operatorname{Cl}_2 & \xrightarrow{h\nu} \operatorname{CH}_2 \operatorname{Cl}_2 + \operatorname{HCl}, \\ \operatorname{CH}_2 \operatorname{Cl}_2 + \operatorname{Cl}_2 & \xrightarrow{h\nu} \operatorname{CHCl}_3 + \operatorname{HCl}, \\ \operatorname{CHCl}_3 + \operatorname{Cl}_2 & \xrightarrow{h\nu} \operatorname{CCl}_4 + \operatorname{HCl}; \end{split}$$

 реакция Коновалова, в результате которой образуется смесь изомеров — 1-нитропропан и 2-нитропропан:

□ Реакция окисления:

- реакция полного горения этана идет с образованием углекислого газа и воды: $2_{\mbox{H}_3\mbox{C}}$ $^{\mbox{CH}_3}$ $_{\mbox{+}}$ $_{\mbo$
- частичное окисление метана приводит к образованию формальдегида: ${
 m CH_4}+{
 m O_2} \xrightarrow{t^o,\, {
 m kar.}} {
 m CH_2O}+{
 m H_2O};$
- частичное окисление метана при высоких температурах характеризуется образованием ацетилена: $6\mathrm{CH_4}$ +

$$+ \hspace{0.1cm} O_{2} \xrightarrow{\hspace{0.1cm} 1500 \, ^{\circ} C} \hspace{0.1cm} 2 \underset{HC}{\longleftarrow} CH \hspace{0.1cm} + \hspace{0.1cm} 2CO \hspace{0.1cm} + \hspace{0.1cm} 10H_{2};$$

 в результате неполного окисления других гомологов алкана в присутствии катализатора получается смесь карбоновых кислот:

 на первой стадии окисления всех алканов (в том числе арилалканов) наблюдается образование гидропероксидов:

$$\begin{array}{c|c} CH_3 & CH_3 \\ H & OOH \\ CH_3 & CH_3 \end{array}$$

□ Термическое превращение:

• реакция дегидрирования этана идет с образованием этилена: H_3 С $\xrightarrow{CH_3}$ $\xrightarrow{t^\circ}$ H_3 С $\xrightarrow{CH_2}$ + H_2 ;

- реакция крекинга метана приводит к образованию сажи: $CH_4 \xrightarrow{1000 \, ^\circ C} C+2H_3$;
- реакция изомеризации пентана идет при нагревании в присутствии хлорида алюминия:

Применение

Газообразные алканы используют в качестве топлива. Жидкие алканы входят в состав продуктов переработки нефти (бензин, дизельное топливо, керосин), применяются в качестве растворителей. Вазелины, твердые парафины широко распространены в медицине и парфюмерии (мази, крема).

Циклоалканы

Циклоалканы — насыщенные углеводороды, молекулы которых содержат цикл из трех и более атомов углерода С. Состав циклоалканов характеризуется общей формулой C_nH_{2n} $(n \ge 3)$, где n— число атомов С в молекуле.

Некоторые представители класса

Элементы боковых цепей — гомологи:

$$\Box$$
 циклогексан: $\begin{matrix} H_2C \\ C \\ H_2C \\ C \\ H_2 \end{matrix} \begin{matrix} C \\ C \\ C \\ H_2 \end{matrix}$

Получение

- В промышленности циклоалканы выделяют из продуктов перегонки нефти (в основном из нафтеновой нефти);
- $\hfill \square$ лабораторные способы получения простейших циклоалканов:
 - реакция восстановления ароматических углеводородов идет в присутствии катализатора:

• реакция дигалогенпроизводных алканов с металлическим натрием:

Химические свойства

Циклоалканы по реакционной способности подобны алканам. Отличительная черта циклоалканов — реакция присоединения, не характерная для нециклических насыщенных углеводородов.

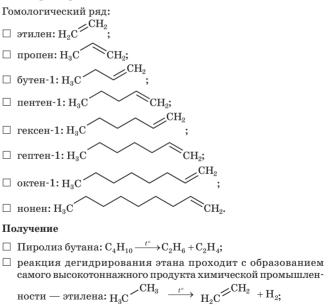
- □ Реакция присоединения:
 - в результате присоединения водорода к молекуле циклоалкана происходит раскрытие цикла с образованием алканов с таким же числом атомов углерода С:

• в результате реакции циклоалкана с бромом образуется дигалогенпроизводное алкана:

□ Термическое превращение:

рования циклогексана в присутствии катализатора и при сильном нагревании приводит к образованию бензола).

Применение


Циклопентан: в качестве добавки к бензинам, улучшающей его эксплуатационные свойства. Циклогексан: широко применяемый растворитель в органической химии, используется в процессе получения синтетических волокон.

Непредельные алифатические углеводороды

Алкены

Алкены — углеводороды, молекулы которых содержат одну двойную С — С связь (σ - и π -связи), атомы углерода С при двойной связи находятся в состоянии sp^2 -гибридизации. Состав алкенов характеризуется общей формулой C_nH_{2n} , где n— число атомов С в молекуле.

Некоторые представители класса

□ в результате реакции дегидратации первичного спирта бутанола-1 образуется бутен-1:

□ реакции дегидратации вторичного спирта бутанола-2 проходит с образованием смеси изомеров бутена-1 и бутена-2:

□ в результате взаимодействия 2,3-дибромбутана с металлическим магнием образуется бутен-2:

□ при нагревании спиртового раствора щелочи с моногалогенпроизводным бутана получают бутен-1:

Химические свойства

Алкены — более химически активными веществами, чем алканы. Это связано с тем, что менее прочная π -связь ($E_{\rm cs}$, = 265 кДж/моль) по сравнению с π -связью ($E_{\rm cs}$, = 347 кДж/моль) легко разрывается, что обусловливает характерные для алкенов реакции присоединения.

□ Реакция присоединения:

гидрирование алкенов в присутствии катализатора (платины Pt, палладия Pd, никеля Ni) приводит к образованию алканов:

$$\mathbf{R} \overset{\mathbf{H}}{\stackrel{\mathbf{C}}{\triangleright}} \underbrace{\mathbf{R}'}_{\mathbf{H}} + \mathbf{H}_2 \xrightarrow{\text{Kat.}} \mathbf{R} \overset{\mathbf{H}_2}{\stackrel{\mathbf{C}}{\triangleright}} \underbrace{\mathbf{R}'}_{\mathbf{H}_2};$$

 реакция бромирования — качественная реакция на двойную связь, присутствующую в неизвестном углеводороде:

 реакция гидратации этилена в кислой среде приводит к образованию этилового спирта:

$$_{\mathrm{H_2C}}$$
 $\stackrel{\mathrm{CH_2}}{=}$ $_{\mathrm{H_2O}}$ $\stackrel{\mathrm{H^+}}{\longrightarrow}$ $_{\mathrm{H_3C}}$ $\stackrel{\mathrm{CH_2OH}}{\longrightarrow}$;

 взаимодействие пропена с хлороводородом проходит по правилу Марковникова — ион водорода присоединяется к наиболее гидрированному атому углерода, образующему кратную связь:

 взаимодействие трихлорпропена с хлороводородом проходит против правила Марковникова — ион водорода присоединяется к наименее гидрированному атому углерода, образующему кратную связь:

□ Реакция окисления:

• реакция полного окисления этилена:

$$_{\rm H_2C}$$
 $\stackrel{\rm CH_2}{>}$ + 3O₂ \rightarrow 2CO₂ + 2H₂O;

• при пропускании этилена через водный раствор перманганата калия наблюдается обесцвечивание раствора — качественная реакция на двойную связь, присутствующую в неизвестном углеводороде:

$$3_{\text{H}_2\text{C}} \nearrow^{\text{CH}_2} + 2\text{KMnO}_4 + 4\text{H}_2\text{O} \longrightarrow 3_{\text{H}_2\text{C}} \nearrow^{\text{CH}_2} + 2\text{MnO}_2 + 2\text{KOH};$$

• промышленный способ получения этиленгликоля:

$$\begin{array}{c} \text{OH} \\ \text{H}_2\text{C} \stackrel{\text{CH}_2}{=} + \text{O}_2 \xrightarrow{\text{Ag}, \text{H}_3\text{O}^{\circ}} & \text{H}_2\text{C} \\ \text{OH} \end{array}$$

□ Реакция полимеризации:

• в зависимости от выбора катализатора полимеризация этилена проходит с образованием полиэтилена высокой либо низкой плотности:

$$n\left(\begin{array}{ccc} H_2 & & & \\ H_2 & & & \\ & & & \end{array}\right) & \longrightarrow & \left(\begin{array}{ccc} H_2 & & \\ C & & \\ H_2 & & \end{array}\right)_n;$$

реакция полимеризации хлорэтилена приводит к образованию поливинилхлорида:

$$n\left(\begin{array}{c} Cl \\ L_2C \end{array}\right) \longrightarrow \left(\begin{array}{c} Cl \\ C \\ H_2 \end{array}\right)_n;$$

• реакция полимеризации стирола:

$$n\left(\begin{array}{c} C_0H_5 \\ I\\ H_2C \end{array}\right) \longrightarrow \left(\begin{array}{c} C_0H_5 \\ C\\ H_2 \end{array}\right);$$

• в результате полимеризации тетрафторэтилена получа-

ется тефлон:
$$n\left(\begin{array}{c}F_2C \nearrow^{CF_2}\end{array}\right) \longrightarrow \left(\begin{array}{c}F_2\\C \nearrow^{C}\end{array}\right)_n$$
.

Применение

Производство ВМС (см. «Высокомолекулярные соединения»): полиэтилен, полистирол и др.

Алкины

Алкины — углеводороды, молекулы которых содержат одну тройную С \equiv С связь (одну σ - и две π -связи), атомы углерода С при тройной связи находятся в состоянии sp-гибридизации. Состав алкинов характеризуется общей формулой C_nH_{2n-2} , где n — число атомов С в молекуле.

Некоторые представители класса

Гомологический ряд:

□ ацетилен: НС СН

□ пропин: Н₃С СН;

□ бутин-1: H₃C СН;

□ пентин-1: Н₃С СН;

Получение

□ Выделяющийся водород поддерживает высокую температуру реакции (основной промышленный способ):

$$6\text{CH}_4 + \text{O}_2 \xrightarrow{1500\,^{\circ}\text{C}} 2_{\text{HC}} \rightleftharpoons^{\text{CH}} + 2\text{CO} + 10\text{H}_2;$$

□ двухстадийная реакция образования ацетилена идет только при использовании сильных оснований:

$$\begin{array}{c|c} Cl & Cl \\ H_2C & CH_2 & \underset{C_2H_5OH}{\overset{NaOH}{\longrightarrow}} & Cl \\ Cl & & H_2C & CH \end{array} + NaCl \ + H_2O,$$

 \Box данная широко используемая реакция лежит в основе получения ацетилена, применяемого для резки металлов: ${\rm CaC_2 + 2H_2O} \to {\rm HC} {\rightleftharpoons}^{\rm CH} + {\rm Ca(OH)_2}.$

Химические свойства

Алкины по реакционной способности не уступают алкенам. Кроме того, для них характерны особые, не свойственные другим ранее рассматриваемым углеводородам типы реакций.

□ Реакция присоединения:

гидрирование алкинов в присутствии катализатора (платины Pt) при нагревании приводит к образованию алканов:

$$R-C \stackrel{CH}{=} \stackrel{H_2,Pt}{\longrightarrow} R-C \stackrel{CH_2}{\longrightarrow} \stackrel{H_2,Pt}{\longrightarrow} R-C \stackrel{CH_3}{\longrightarrow};$$

 реакция бромирования с образованием тетрабромалкана проходит в две стадии;

$$R-C \stackrel{Br_2}{\longrightarrow} R-C \stackrel{Br_2}{\longrightarrow} R-C \stackrel{Br_2}{\longrightarrow} R-C \stackrel{Br_3}{\longrightarrow} R-C \stackrel{Br_4}{\longrightarrow} R-C \stackrel{Br_5}{\longrightarrow} R-C$$

 взаимодействие пропина с хлороводородом проходит по правилу Марковникова:

• взаимодействие ацетилена с водой в присутствии кислот и солей ртути приводит к образованию уксусного альдегида (реакция Кучерова):

$$HC \stackrel{CH}{=} CH + H_2O \stackrel{H^+, Hg^{2+}}{\longrightarrow} H_3C \stackrel{C}{\longrightarrow} C \stackrel{V}{\stackrel{}{\longrightarrow}} ;$$

 при взаимодействии других гомологов ацетилена с водой в присутствии кислот и солей ртути образуются кетоны (реакция Кучерова):

$$R-C$$
 $\stackrel{CH}{=}$ H_2O $\stackrel{H^+,Hg^{2+}}{\longrightarrow}$ $R-C$ $\stackrel{O}{\longrightarrow}$ CH_2 .

□ Реакция замещения:

$$H_3C-C$$
 $\stackrel{\frown}{=}$ CH + [Ag(NH₃)₂]OH \longrightarrow H_3C-C $\stackrel{\frown}{=}$ C Ag + 2NH₃ + 2H₂O

(при взаимодействии с сильными основаниями происходит замещение атома водорода на металл).

- □ Реакция окисления:
 - реакция горения: $2_{HC} \stackrel{CH}{\Longrightarrow} ^{CH} + 5O_2 \longrightarrow 4CO_2 + 2H_2O;$
 - при неполном окислении гомологов ацетилена под действием дихромата калия в кислой среде или перманганата калия в нейтральной среде происходит разрыв по тройной связи с образованием смеси карбоновых кислот:

$$H_3C-C$$
 $\stackrel{\bigcirc}{>}^{CH}$ + 3[O] + H_2O \longrightarrow H_3C-C $\stackrel{\bigcirc}{>}^{O}$ + $H-C$ $\stackrel{\bigcirc}{>}^{O}$.

- □ Реакция полимеризации:
 - реакция димеризации ацетилена:

• реакция линейной тримеризации ацетилена:

$$3_{HC} \stackrel{\text{CH}}{=} \stackrel{\text{H}^+, \text{Cu}^+}{\text{NH}_4\text{Cl}} \rightarrow \stackrel{\text{H}}{\text{H}_2\text{C}} \stackrel{\text{C}}{=} \stackrel{\text{C}}{\text{C}} \stackrel{\text{C}}{\text{C}} \stackrel{\text{CH}_2}{\text{C}};$$

• реакция циклической тримеризации ацетилена приводит

к образованию бензола:
$$^{3}_{\mathrm{HC}}$$
 $\stackrel{\mathrm{CH}}{\longrightarrow}$ $\stackrel{_{400\,^{\circ}\mathrm{C}}}{\longrightarrow}$.

Применение

Ацетилен — представитель алкинов, имеющий наибольшее практическое значение, применяется в производстве ВМС (полиакрилонитрил, синтетический каучук, поливинилхло-

рид), является исходным сырьем в производстве уксусной кислоты и хлорсодержащих растворителей (например, тетрахлорэтана).

Алкадиены

Алкадиены — углеводороды, молекулы которых содержат две двойные связи С=С. С практической точки зрения большое значение имеют алкадиены с сопряженными двойными связями,

например, бутадиен-1,3 $\mathrm{H_2C}$ С $\mathrm{CH_2}$. Состав алкадиенов характеризуется общей формулой $\mathrm{C_nH_{2n-2}}$ $(n\geqslant 3)$, где n — число атомов C в молекуле.

Некоторые представители класса

Получение

□ В результате дегидрирования и дегидратации этилового спирта происходит образование бутадиена-1,3 (реакция Лебедева):

$$2 \underset{H_3C}{\overset{H_2}{\nearrow}} C \underset{OH}{\overset{Al_2O_3,\,ZnO}{\longrightarrow}} \underset{H_2C}{\overset{H}{\nearrow}} C \underset{H}{\overset{C}{\nearrow}} CH_2 + H_2 + 2H_2O;$$

 \square в результате дегидрирования бутана в присутствии оксидов алюминия и хрома Al_2O_3 , Cr_2O_3 в качестве катализаторов и при интенсивном нагревании образуется бутадиен-1,3:

 \square в результате дегидрирования 2-метил-бутана в присутствии оксидов алюминия и хрома ${\rm Al_2O_3},\,{\rm Cr_2O_3}$ в качестве катализаторов и при интенсивном нагревании образуется изопрен:

□ в результате дегидрирования бутена-1 в присутствии оксидов магния и цинка MgO, ZnO в качестве катализаторов и сильном нагревании происходит образование бутадиена-1,3:

Химические свойства

Наличие двойных связей в молекулах алкадиенов обуславливает их способность участвовать в реакциях присоединения и полимеризации.

□ Реакция присоединения:

(в результате реакции происходит обесцвечивание бромной воды).

□ Реакция полимеризации:

• в результате полимеризации бутадиена-1,3 в зависимости от используемого катализатора могут получаться цис- (более эластичны) и транс-формы бутадиенового каучука (метод Лебедева):

$$n_{\mathrm{H}_2\mathrm{C}}$$
 С $n_{\mathrm{H}_2\mathrm{C}}$ С $n_{\mathrm{H}_2\mathrm{C}}$

• в результате полимеризации 2-метил-бутадиена-1,3 в зависимости от используемого катализатора образуются цис- (более эластичны) и транс-формы изопренового каучука:

$$CH_2$$
 H_2C C H C H C H C H H C H H C H

• вулканизация бутадиенового каучука:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

Применение

Получение каучуков.

Ароматические углеводороды

Ароматические углеводороды, или **арены** — углеводороды, молекулы которых содержат бензольные кольца . Каждый атом углерода C в бензольном кольце находится в состоянии sp^2 -гибридизации.

Некоторые представители класса

Получение

Ранее крупнотоннажным промышленным способом получения бензола являлась перегонка каменноугольной смолы. В настоящее время бензол и многие его гомологи получают в результате каталитических превращений продуктов перегонки нефти:

 реакция превращения гексана в бензол проходит в две стадии при нагревании и в присутствии катализатора:

□ пропускание ацетилена над нагретым углем приводит к образованию бензола (метод Бертло):

$$_{\rm HC}$$
 $\stackrel{\rm CH}{=}$ $\stackrel{\rm C_{arr.,\,400\,^{\circ}C}}{=}$

Химические свойства

Несмотря на наличие кратных связей в молекуле бензола и его производных, для ароматических соединений наиболее характерны реакции замещения, чем реакции присоединения.

□ Реакция присоединения:

• при гидрировании бензола образуется циклогексан:

• реакция галогенирования бензола идет только при нагревании и облучении ультрафиолетом:

$$\begin{array}{c|c} & & & \text{Cl} & & \\ & + & 3\text{Cl}_2 & \xrightarrow{h\nu} & & \\ & & \text{Cl} & & \\ & & & \text{Cl} & \\ & & & & \\ \end{array}$$

- □ Реакция замещения (в бензольном кольце):
 - бензол взаимодействует с галогенами (Cl₂, Br₂ в присутствии катализаторов (хлорида алюминия AlCl₃, бромид железа FeBr₃)) даже при комнатной температуре:

• если R = -OH, -OR, $-NH_2$, $-C_6H_5$, $-C_nH_{2n+1}$, -Hal (то есть R — ориентанта I рода), то наблюдается повышение электронной плотности в орто- (на соседнем атоме углерода) и пара- (через два атома углерода, на третьем) положениях бензольного кольца, где и происходит замещение атома водорода на атом хлора:

$$\begin{array}{c|c} R & R & R \\ + \operatorname{Cl}_2 & \xrightarrow{\operatorname{AlCl}_3} & & & \\ \end{array}$$

получение гомологов бензола, алкилирование по Фриделю — Крафтсу:

• если $R = -NO_2$, —СООН, —СНО, —СN (то есть R — ориентанта II рода), то наблюдается повышение электронной плотности в мета- (через один атом углерода, на втором атоме углерода) положении бензольного кольца, где и происходит замещение атома водорода на атом хлора:

 реакция нитрования бензола азотной кислотой проходит в присутствии серной кислоты;

$$\begin{array}{c|c} & H \\ & + HNO_3 & \xrightarrow{-H_2SO_4} & \end{array} \begin{array}{c} NO_2 \\ & + H_2O; \end{array}$$

• реакция нитрования толуола приводит к образованию взрывчатого вещества тринитротолуола (тротила):

$$\begin{array}{c} \text{CH}_{3} \\ + \text{ HNO}_{3} \xrightarrow{\text{H}_{2}\text{SO}_{4}} \\ \text{O}_{2}\text{N} \end{array} + \text{H}_{2}\text{O};$$

• реакция алкилирования бензола изобутиленом проходит в кислой среде:

□ Реакция замещения (в боковой цепи):

COOH

(алкилбензолы по $_{\mbox{добно}}$ алканам взаимодействуют с галогенами (Cl $_{\mbox{\tiny 2}}$, Br $_{\mbox{\tiny 2}}$ при облучении ультрафиолетом)).

$$\square$$
 Реакция окисления: 0 (алкилбензо-

лы в присутствии перманганата калия ${\rm KMnO_4}$ либо бихромата калия ${\rm K_2Cr_2O_7}$ могут окисляться до карбоновых кислот).

$$HC=CH_2$$
 $CC-C$ CC

(в результате реакции полимеризации винилбензола образуется полистирол).

Применение

Производство полимерных материалов (например, полистирола), красителей, медикаментов, взрывчатых веществ и инсектицидов; используются в качестве растворителей.

Функциональные производные углеводородов

Галогенпроизводные углеводородов

Состав галогенпроизводных углеводородов характеризуется общей формулой RHal, где R — остаток молекулы предельного, непредельного или ароматического углеводорода, полученный при замещении атомов водорода H на атом галогена Hal — I, Br, Cl, F.

Некоторые представители класса

Получение

□ бензилхлорид:

 галогенирование алкенов приводит к образованию дигалогенпроизводного алкана;

$$R \xrightarrow{C} R' + Cl_2 \xrightarrow{CCl_4} R \xrightarrow{Cl} R'$$
 (см. «Алкены»);

□ при взаимодействии алкенов с галогеноводородом образуется моногалогенпроизводное алкана:

$$H_2C$$
 CH_2 + HCl \longrightarrow H_2C
 CH_3 (см. «Алкены»);

 \square в присутствии хлорида алюминия ${
m AlCl}_3$ атом водорода H бензольного кольца при комнатной температуре замещается на

(см. «Арены»);

□ при облучении светом и нагревании бензола образуется гекса-

хлорциклогексан:
$$+$$
 3Cl₂ \xrightarrow{hv} Cl Cl Cl

Химические свойства

- □ Реакиия замешения:
 - атом хлора Cl– может замещаться на более слабое основание, например циан-ион Cl $^-$: CH $_3$ CH $_2$ Cl + NaCH \rightarrow CH $_3$ CH $_2$ CN + NaCl;

при взаимодействии галогеналкана с ацетатом получаются сложные эфиры;

$$CH_3CH_2Cl + \bigcup_{\substack{l \\ C \\ ONa}} \bigcup_{ONa} \bigcup_{\substack{l \\ H_3C}} \bigcup_{C \\ O-CH_2CH_3} + NaCl;$$

- при взаимодействии галогеналкана с алкоголятами образуются простые эфиры: CH₃CH₂Cl + CH₃CH₂ONa → CH₄CH₂OCH₂CH₃ + NaCl;
- взаимодействие галогеналканов с аммиаком с образованием аминов: $CH_3CH_2Cl + NH_3 \rightarrow CH_3CH_2NH_2 + HCl$.

□ Реакция отщепления:

• при нагревании галогеналкана со спиртовым раствором щелочи образуются алкены: $CH_3CH_2Cl + NaOH \xrightarrow{t^c, C_2H_5OH} H_2C = CH_2 + NaCl + H_2O$;

□ Получение и использование реактива Гриньяра:

 образование реактива Гриньяра, широко применяемого в органическом синтезе:

$$CH_3CH_2Cl + Mg \xrightarrow{C_2H_5} CH_3CH_2MgCl;$$

 взаимодействие реактива Гриньяра с кетоном в кислой среде идет с образованием третичного спирта:

$$CH_{3}CH_{2}MgCl + CCH_{3} + HCl \longrightarrow C_{2}H_{5} - CCH_{4} + MgCl_{2};$$

$$CH_{3} + HCl \longrightarrow C_{2}H_{5} - CCH_{4} + MgCl_{2};$$

$$CH_{3} + HCl \longrightarrow C_{2}H_{5} - CCH_{5} + MgCl_{2};$$

 взаимодействие реактива Гриньяра с альдегидом в кислой среде идет с образованием вторичного спирта:

$$CH_3CH_2MgCl + \bigcup_{H_3C} C \setminus_{H} + HCl \longrightarrow \bigcup_{C_2H_5} CH_3 + MgCl;$$

- при подкислении реактива Гриньяра получают алканы: $\mathrm{CH_2CH_2MgCl} + \mathrm{HCl} \to \mathrm{C_2H_6} + \mathrm{MgCl_2};$
- взаимодействие реактива Гриньяра с формальдегидом в кислой среде приводит к образованию первичного спирта;

$$CH_3CH_2MgCl + \bigvee_{H = C} \begin{matrix} O \\ II \\ H \end{matrix} + HCl \longrightarrow C_3H_7OH + MgCl_2;$$

 взаимодействие реактива Гриньяра с углекислым газом в кислой среде приводит к образованию карбоновой кислоты с увеличением углеродной цепочки на один атом С:

$$\mathbf{CH_3CH_2MgCl} + \mathbf{CO_2} + \mathbf{HCl} \longrightarrow \mathbf{H_3C} \stackrel{\mathbf{H_2}}{\frown} \mathbf{C} \stackrel{\mathbf{O}}{\frown} + \mathbf{MgCl_2}.$$

Применение

В качестве растворителей (хлороформ CHCl_3), хладагентов (фреон $\mathrm{CF}_2\mathrm{Cl}_2$), ядохимикатов (4,4'-дихлордифенил-трихлорэтан, или ДДТ); в медицине (хлорэтан $\mathrm{C}_2\mathrm{H}_5\mathrm{Cl}$ — при анестезии, 2-бром, 2-хлор, 1,1,1-трифторэтан $\mathrm{CF}_3\mathrm{CHClBr}$ — при наркозе); производство полимерных материалов (поливинилхлорид, тефлон).

Спирты

Спирты — производные углеводородов, молекулы которых содержат одну или несколько гидроксильных групп — ОН. Если все атомы углерода С в молекуле спирта находятся в состоянии sp^3 -гибридизации (в случае предельных спиртов), состав таких спиртов характеризуется общей формулой $C_nH_{2n+2-m}(OH)_m$, где n— число атомов С в молекуле, m— число гидроксильных групп (определяет атомность спирта, например при m=1 спирт — одноатомный, при m=2 — двухатомный, при m=3 — трехатомный и т. д.).

Некоторые представители класса

- □ этанол: С₂Н₅ ОН (жидкость);
- \square ундеканол-1: $C_{11}H_{23}$ —ОН (жидкость);

приводит к образованию первичных спиртов (гидроксильная

 \square этандиол-1, 2 этиленгликоль: $^{\mathrm{HO}}$ ОН (жидкость);

группа связана с наиболее гидрированным (с двумя либо тремя, в случае метанола, атомами водорода) атомом углерода):

□ восстановление кетонов в присутствии никеля Ni, платины Pt, палладия Pd и кобальта Co в качестве катализатора приводит к образованию вторичных спиртов (гидроксильная группа связана с атомом углерода, гидрированным одним атомом водорода):

- 🗆 взаимодействие угарного газа и водорода в специфических условиях может приводить к образованию метанола (сильный яд): $CO + H_2 \xrightarrow{P, t^\circ, KAT.} CH_2OH;$
- 🗆 при брожении водного раствора глюкозы образуется этиловый спирт: $C_2H_{12}O_6 \xrightarrow{\varphi \text{ерменты}} C_2H_5OH + 2CO_2$.

Получение многоатомных спиртов

□ Этиленгликоль образуется в результате пропускания этилена через водный раствор перманганата калия (марганцовки):

$$3_{\text{H}_2\text{C}} \overset{\text{OH}}{\underset{\text{OH}}{\stackrel{\mid}{=}}} + 2\text{KMnO}_4 + 4\text{H}_2\text{O} \longrightarrow 3\text{H}_2\text{C} \overset{\text{CH}_2}{\underset{\text{OH}}{\stackrel{\mid}{=}}} + 2\text{MnO}_2 + 2\text{KOH}$$

(см. «Алкены»);

 крупнотоннажное производство этиленгликоля основано на реакции неполного окисления этилена в присутствии металлического серебра (в качестве катализатора):

$$_{
m H_2C}$$
 $\stackrel{
m CH_2}{=}$ $\stackrel{
m CH_2}{=}$ $\stackrel{
m CH_2}{=}$ $\stackrel{
m CH_2}{=}$ (см. «Алкены»); OH

 □ глицерин получают в результате гидролиза триглицеридов (жира):

 крупнотоннажное производство глицерина в настоящее время основано на многостадийном превращении пропилена:

Химические свойства

Спирты — химически активные кислородсодержащие соединения, что обусловлено наличием в их молекулах полярных связей О — Н , С — О, С — Н. Для алканолов характерны реакции замещения (замещение водорода гидроксильной группы, замещение самой гидроксильной группы), отщепления (дегидратации и дегидрирования) и окисления. Атомы водорода гидроксильных групп многоатомных спиртов по сравнению с алканолами (одноатомными предельными спиртами) обладают повышенной способностью к замещению.

- □ Реакция замещения (с разрывом связи О—Н):
 - алканолы в безводной среде проявляют кислотные свойства, реагируя со щелочными металлами с выделением водорода: $2C_2H_5OH + 2K \rightarrow 2C_2H_5OK + H_2$;
 - в зависимости от количества используемого щелочного металла могут образовываться моно-, ди- и тринатрийглиператы:

 в отличие от одноатомных спиртов глицерин взаимодействует с гидроксидами тяжелых металлов с образованием хелатных соединений (качественная реакция на многоатомные спирты);

$$H_2C - O \leftarrow H$$
 $H_2C - O \leftarrow H$
 $H_2C - O \leftarrow H$

$$\begin{array}{c} H_{2}C-O & O-CH_{2} \\ \downarrow & O-CH_{2} \\ \downarrow & O-CH \\ \downarrow & +2H_{2}O; \\ H_{2}C-OH & HO-CH_{2} \\ \end{array}$$

 обратимая реакция этерификации идет с образованием сложных эфиров:

$$C_{2}H_{5}OH \xrightarrow{f} CC_{CH_{3}} \xrightarrow{H_{2}SO_{4}, I^{\circ}} C_{2}H_{5} \xrightarrow{C} CC_{CH_{3}} + H_{2}O;$$

 многоатомные спирты подобно алканолам реагируют с кислотами (как с органическими, так и с неорганическими) с образованием сложных эфиров:

- □ Реакция замещения (с разрывом связи С О):
 - взаимодействие алканолов с галогеноводородом приводит к образованию галогеналканов: $C_2H_3OH + HBr \xrightarrow{H^+, \ell^o} OH^-, \ell^o$ $\longleftrightarrow C_2H_5Br + H_2O;$

многоатомные спирты подобно алканолам реагируют с галогеноводородом с образованием последовательно монодихлоргидрина глицерина и 1,2,3-трихлорпропана:

- в результате взаимодействия спиртов с хлоридом фосфора(III) образуются галогеналканы: $3R-OH+PCl_3 \rightarrow 3R-Cl+H_3PO_3$;
- в результате взаимодействия спиртов с хлоридом фосфора(V) образуются галогеналканы: R— $OH + PCl_5 \rightarrow R$ — $Cl + POCl_3 + HCl$;
- аммиак и газообразный этиловый спирт, пропущенные через нагретый до 300 °C оксид алюминия, вступают в реакцию с образованием этиламина: $C_2H_5OH + H_1^2NH_2 \xrightarrow{Al_2O_3, t^2} C_2H_5NH_2 + H_2O;$
- при взаимодействии аммиака с избытком этанола происходит образование диэтиламина и триэтиламина:

$$2 \\ C_2H_5 \xrightarrow{OH} + H \xrightarrow{H} \xrightarrow{Al_2O_3, t^\circ} \xrightarrow{NH} + 2H_2O,$$

$$3 \\ C_2H_5 \xrightarrow{OH} + H \xrightarrow{N} H \xrightarrow{Al_2O_3, t^\circ} \xrightarrow{C_2H_5} + 3H_2O.$$

- □ Реакция отщепления (дегидратация):
 - межмолекулярная дегидратация спиртов идет в присутствии концентрированной серной кислоты с образованием простых эфиров:

$$\stackrel{OH}{R} \stackrel{+}{H} \stackrel{O}{\longrightarrow} \stackrel{H_2SO_3,140\,^{\circ}C}{\longrightarrow} \stackrel{R}{R} \stackrel{O}{\longrightarrow} \stackrel{R_1+}{H_2O};$$

 внутримолекулярная дегидратация спиртов происходит в присутствии концентрированной серной кислоты при более жестких температурных условиях с образованием алкенов:

- □ Реакция отщепления (дегидрирование):
 - в результате дегидрирования первичных спиртов образуются альдегиды;

$$H_3C - C - O - H_1 - H_2;$$
 $H_3C - C - O - H_2 - H_3C - C - H_2;$

дегидрирование вторичных спиртов приводит к образованию кетонов;

$$\begin{array}{ccc} & OH & O\\ I & & I\\ -C -CH_3 & \xrightarrow{\quad Cu,\, t^o \quad} & H_3C -C -CH_3 \,+\, H_2. \end{array}$$

- □ Реакция окисления:
 - полное окисление этанола: $C_2H_5OH + 3O_2 \xrightarrow{t^\circ} 2CO_2 + + 3H_2O;$
 - частичное окисление первичных одноатомных спиртов проходит в присутствии меди Cu, перманганата калия $KMnO_4$, бихромата калия K_2Cr_2O7 с образованием аль-

• неполное окисление вторичных одноатомных спиртов проходит в присутствии меди Cu, перманганата калия $K_2Cr_2O_7c$ образованием кетонов:

$$\begin{array}{c} OH \\ H_3C \\ CH \\ CH_3 \end{array} \xrightarrow{[O]} H_3C \xrightarrow{C} CH_3 \xrightarrow{[O]} H_2C \xrightarrow{C} CH_3$$

Применение

В качестве растворителей (этиловый спирт C_2H_5OH), добавки в моторное топливо либо альтернативы бензину; медицина (этиловый спирт: в качестве антисептика, противоядия при отравлении метанолом и этиленгликолем), производство полимерных материалов (бутадиеновый каучук) и уксусной кислоты.

Фенолы

Фенолы — производные моноциклических аренов, молекулы которых содержат одну или несколько гидроксильных групп — ОН у атома углерода С бензольного кольца. Состав фенолов (без боковых алкильных цепей) характеризуется общей формулой $\mathbf{C}_6\mathbf{H}_{6-m}(\mathrm{OH})_m$, где m — число гидроксильных групп (определяет атомность фенола).

Некоторые представители класса

$$\Box$$
 1,2-дигидроксибензол (пирокатехин): ОН ОН \Box м-гидрокситолуол (м-крезол): \Box СН $_3$

Получение

□ Последовательная обработка каменноугольной смолы (смеси моно- и полициклических ароматических углеводородов) щелочью и кислотой приводит к селективному выделению фенола:

OH ONA ONA
$$+ H_2O$$
, ONA $+ H_2O$, $+ H_2O$, $+ H_2SO_4$ $+ NaHSO_4$).

 □ реакцию хлорбензола с водным раствором щелочи проводят в жестких температурных условиях (300 °C) в присутствии меди Сu в качестве катализатора;

Cl ONa
$$+ 2NaOH \xrightarrow{p,t^{\circ}} + NaCl + H_2O,$$

$$\begin{array}{c|c} \text{ONa} & \text{OH} \\ \hline \\ + & \text{HCl} \end{array} \\ \begin{array}{c} \end{array} \\ + & \text{NaCl.} \end{array}$$

□ образование фенола может происходить также при взаимодействии хлорбензола с водяным паром:

$$\begin{array}{c|c} Cl & OH \\ \hline \\ + H_2O & \xrightarrow{-500\,^{\circ}C} & \\ \hline \end{array} \begin{array}{c} + HCl; \end{array}$$

□ в настоящее время крупнотоннажное производство фенола (а вместе с ним — и другого ценного продукта, ацетона) основано на многостадийном процессе, в котором исходными веществам выступают бензол и пропен (кумольный способ):

Химические свойства

Благодаря диссоциации в водных растворах фенолы проявляют свойства слабых кислот. Кроме того, наличие бензольного кольца и гидроксильной группы — ОН (заместителя І рода), обусловливает реакции замещения (исключительно в орто- и пара-положения) и присоединения.

- □ Реакция замещения (с участием гидроксильной группы):
 - в отличие от спиртов фенолы взаимодействуют со щело-

чами:
$$+$$
 NaOH $+$ H₂O;

• как и спирты, фенолы реагируют со щелочными метал-ОН ONa

лами: 2
$$+$$
 2Na \longrightarrow 2 $+$ H₂;

• раствор приобретает фиолетовую окраску, которая исчезает при добавлении кислоты (качественная реакция на одноатомные фенолы): $6C_6H_5OH + Fe(Cl)_3 \rightleftharpoons 6H^+ + 3Cl^- + + [Fe(OC_6H_5)_6]^{3-}$.

- □ Реакция замещения (с участием бензольного кольца):
 - при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенол:

$$\begin{array}{c} \text{OH} \\ + 3 \text{Br}_2 \end{array} \longrightarrow \begin{array}{c} \text{OH} \\ \text{Br} \\ + 3 \text{HBr}; \end{array}$$

 в результате нитрования фенола образуется пикриновая кислота:

OH OH
$$+3\text{HNO}_{3\text{ROHII.}}$$
 $\xrightarrow{\text{H}_2\text{SO}_4\text{ BOHII.}}$ $O_2\text{N}$ O_2 $O_2\text{N}$ O_2 O_2 O_2 O_2 O_3 O_4 O_4 O_5 O_5

 в зависимости от температуры реакции сульфирование фенола может приводить к образованию орто- либо парафенолсульфокислоты;

OH
$$2 \longrightarrow + 2H_2SO_4 \longrightarrow SO_3H$$

$$OH \longrightarrow SO_3H$$

 Реакция присоединения: гидрирование фенола приводит к образованию циклогексанола;

$$\begin{array}{c|c} \text{OH} & \text{OH} \\ & & \\ & + 3\text{H}_2 & \xrightarrow{\text{Ni}, t^\circ, p} \end{array}$$

Применение

Производство полимерных материалов (фенолформальдегидные смолы), лекарственных препаратов (салициловая кислота), взрывчатых веществ (диазодинитрофенол), красителей (фенолфталеин), антиокислительных добавок в моторное топливо (ионол).

Альдегиды

Альдегиды — производные углеводородов, молекулы кото-

рых содержат альдегидную группу С=0. Состав предельных

альдегидов характеризуется общей формулой $\mathrm{C}_n\mathrm{H}_{2n+1}$ — $\mathrm{C}_{\mathrm{H}_{2n+1}}$

 $n\geqslant 0$, где n — число атомов углерода С в молекуле.

Некоторые представители класса

Гомологический ряд (названия приведены по международной номенклатуре с указанием агрегатного состояния альдегидов при нормальных условиях, в скобках указаны тривиальные названия альдегидов):

$$\square$$
 этаналь (уксусный альдегид): $H_3C - C$ (жидкость); H \square пентаналь (валериановый альдегид): $C_4H_9 - C$ (жидкость); \square гексаналь (капроновый альдегид): $C_5H_{11} - C$ (жидкость); \square додеканаль: $C_{11}H_{23} - C$ (жидкость); \square тридеканаль: $C_{12}H_{25} - C$ (твердое вещество). \square Получение

□ Окисление первичных спиртов:

$$H_3C \xrightarrow{\begin{array}{c} H_2 \\ C \\ H_2 \end{array}} OH \xrightarrow{\quad Ma_2Cr_2O_7/H_2SO_4 \quad } H_3C \xrightarrow{\begin{array}{c} H_2 \\ C \\ H \end{array}} O;$$

□ реакцию дегидрирования первичных спиртов проводят в жестких температурных условиях (300 °C) в присутствии меди Си в качестве катализатора:

□ каталитическое окисление этилена (промышленный способ получения уксусного альдегида):

$$2_{\text{H}_2\text{C}} \stackrel{\text{CH}_2}{=} + \text{O}_2 \xrightarrow{\text{PdCl}_2} \xrightarrow{\text{H}_3\text{C}} \stackrel{\text{H}}{\sim} 0;$$

- □ реакцию каталитического окисления метана для получения муравьиного альдегида проводят в жестких температурных условиях (500°C) в присутствии меди Cu²⁺ или марганца Mn²⁺ в качестве катализатора: $\mathrm{CH}_{\scriptscriptstyle A} + \mathrm{O}_{\scriptscriptstyle 2} \xrightarrow{t^\circ, \ \text{кат.}} \mathrm{CH}_{\scriptscriptstyle 2}\mathrm{O} + \mathrm{H}_{\scriptscriptstyle 2}\mathrm{O}$ (см. «Алканы»):
- \square реакция Кучерова: HC $\stackrel{CH}{=}$ H_2O $\stackrel{H^*,Hg^{2^*}}{\longrightarrow}$ H_3C $\stackrel{C}{\longrightarrow}$ H_3C (см. «Алкины»).

Химические свойства

Благодаря наличию альдегидной группы \sim C=0 альдегиды —

химически активные органические соединения.

□ Реакция присоединения: • гидрирование альдегидов приводит к образованию пер-

вичных спиртов:
$$(C + \frac{1}{2}) \frac{\text{LiAiH}_4}{\text{Li}_2} \rightarrow \mathbb{R}$$
 $(CH_2OH; H_2OH; H_2OH$

• при взаимодействии альдегида со спиртами последовательно получается полуацеталь, который при избытке спирта превращается в ацеталь:

$$\underset{R}{\overset{O}{\underset{\text{IIONyalgetans}}{\mid C}}} \overset{O}{\underset{\text{HCl}}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{HCl}}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{IIONyalgetans}}{\mid C}} \overset{O}{\underset{\text{HCl}}{\mid C}} \overset{O}{\underset{\text{HCl}}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{IIONyalgetans}}{\mid C}} \overset{O}{\underset{\text{HCl}}{\mid C}} \overset{O}{\underset{\text{C}_2H_5OH}{\mid C}} \overset{O}{\underset{\text{C}}{\underset{\text{C}}}} \overset{O}{\underset{\text{C}}{\underset{\text{C}}}}$$

□ Реакция окисления:

 реакция «серебряного зеркала» (качественная реакция на альдегиды):

$$\begin{array}{c} \overset{O}{\underset{H_3C}{\parallel}} & + & Ag_2O \xrightarrow{\ t^\circ, NH_4OH \ } \ 2Ag \ + \ \overset{O}{\underset{H_3C}{\parallel}} & \overset{O}{\underset{C}{\parallel}} & ; \end{array}$$

 взаимодействие альдегидов со свежеприготовленным гидроксидом меди(II) (качественная реакция на альдегиды):

$$\begin{array}{c} O \\ \parallel \\ C \\ H_3C \end{array} \xrightarrow{C} \begin{array}{c} O \\ \parallel \\ C \\ OH \end{array} + Cu_2O + 2H_2O;$$

• реакция горения альдегидов:

$$2 \underset{\text{H}_2\text{C}}{\overset{\text{O}}{\underset{\text{H}}{|}}} +5O_2 \xrightarrow{t^\circ} 4\text{CO}_2 + 4\text{H}_2\text{O}.$$

□ Реакция полимеризации:

водный раствор формальдегида при длительном стоянии образует осадок белого цвета — параформальдегид

$$c n = 8 - 10: n \downarrow C = O \xrightarrow{H_2O} \begin{bmatrix} H \\ -C \\ H \end{bmatrix}_n;$$

• безводный формальдегид в присутствии пентакарбонила железа $\operatorname{Fe}(\operatorname{CO})_5$ линейно полимеризуется с образованием полиформальдегида с $n \approx 1000$):

$$\begin{array}{c}
H \\
n \\
C = 0 \\
H
\end{array}
\xrightarrow{Fe(CO)_5} \left[\begin{array}{c}
H \\
C \\
C \\
H
\end{array} \right]_{n};$$

 реакция циклической тримеризации формальдегида приводит к образованию триоксана (триоксиметилена);

• в результате реакции циклической тримеризации уксусного альдегида образуется паральдегид;

$$\begin{array}{c} H_3C \\ 3 \\ H \end{array} \xrightarrow[\text{Habandapaperum}]{} \begin{array}{c} CH_3 \\ O \\ CH_3 \end{array}$$

□ Реакция поликонденсации:

• получение сахаров из формальдегида (реакция Бутле-

posa): 6
$$C = O \xrightarrow{Ca(OH)_2} C_6H_{12}O_6;$$

 при взаимодействии фенола и формальдегида в кислой или щелочной среде при нагревании образуются фенолформальдегидные смолы:

$$n = \begin{pmatrix} OH & OH & H_2 \\ H & C & H \end{pmatrix} + nH_2OH$$

Применение

Метаналь: производство лекарственных средств (уротропин), в качестве консерванта биологических тканей, дезинфицирующего средства, исходного вещества для получения фенолформальдегилных смол.

Кетоны

Кетоны — производные углеводородов, молекулы которых содержат карбонильную группу C = 0.

Некоторые представители класса

$$\square$$
 диметилкетон (ацетон): $H_3C = C$ (жидкость);

$$\Box$$
 диэтилкетон; C_2H_5 — C_{2H_5} (жидкость);

$${
m C_2H_5}$$
 ${
m \Box}$ метилфенилкетон (ацетофенон): ${
m C_6H_5-C'}_{
m CH_3}$ (жидкость);

$$\ \, \Box \ \,$$
 дифенилкитон (бензофенон): C_6H_5 — C_6H_5 (твердое вещество).

Получение

□ Получение ацетона из пропена и бензола:

$$\begin{array}{c|c} & H_3C \xrightarrow{H} CH_3 \\ & & \\ & H_3C \xrightarrow{C} CH_2 & \xrightarrow{H^+} & \\ &$$

(см. «Фенолы»);

🗆 окисление пропена в растворе хлорида палладия приводит

к образованию ацетона:
$$_{\rm H_2C} \stackrel{\rm H}{\subset}_{\rm CH_3} \stackrel{\rm PdCl_2}{\longrightarrow}_{\rm H_2O} \stackrel{\rm H_3C-C}{\longrightarrow}_{\rm CH_3}^{\rm O};$$

 $\hfill \square$ ацетилирование аренов (в частности, бензола) по Фриделю — Крафтсу приводит к образованию ароматических кетонов

(ацетофенона):
$$\qquad \stackrel{\text{H}_3\text{C}-\text{C}}{\overset{\text{Cl}}{\underset{\text{AlCl}_3}{\longrightarrow}}} \qquad \stackrel{\text{O}}{\longleftarrow} \text{CH}_3;$$

□ неполное окисление вторичных одноатомных спиртов:

$$\begin{array}{c} OH \\ I \\ CH \\ CH_3 \end{array} \xrightarrow{[O1]} H_3C \xrightarrow{C} C \xrightarrow{C} CH_3 + H_2O \text{ (см. «Спирты»);} \\ H_2 \xrightarrow{C} CH_3 \xrightarrow{IO1} H_3C \xrightarrow{C} CH_3 \end{array}$$

□ дегидрирование вторичных спиртов:

$$\begin{array}{ccc} & \text{OH} & \text{O} \\ & | & \\ & \text{C} - \text{CH}_3 & \xrightarrow{\text{Cu}, t^{\circ}} & \text{H}_3\text{C} - \text{C} - \text{CH}_3 \ + \ \text{H}_2\text{(cm. *Cпирты*)}. \end{array}$$

Химические свойства

Карбонильная группа С=О значительно более инертна, чем альдегидная группа С=О(см. «Альдегиды»). Таким образом,

альдегидная группа
$$C = O(\text{см. «Альдегиды»})$$
. Таким образом,

кетоны в отличие от альдегидов окисляются только в присутствии сильных окислителей, например перманганата калия КМпО₄).

□ Реакция присоединения:

• взаимодействие с циановодородом с образованием аце-

• взаимодействие с реактивом Гриньяра с последующим гидролизом с образованием третичного спирта (гидроксильная группа находится у атома углерода, не связанного ни с одним атомом водорода):

$$\underset{H_3C}{\overset{O}{\underset{C}{\mid I}}} \underset{CH_3}{\overset{C_2H_5MgCl)}{\longrightarrow}} \underset{H_3C}{\overset{CH_3}{\longrightarrow}} \underset{C_2H_5}{\overset{CH_3}{\longrightarrow}} \underset{H_3C}{\overset{H_2O}{\longrightarrow}} \underset{H_3C}{\overset{CH_3}{\longrightarrow}} \underset{C_2H_5}{\overset{COH};}$$

• восстановление до вторичных спиртов:

$$\begin{array}{c} H^3C \xrightarrow{C} CH^3 \xrightarrow{H^3C} CH^3 \end{array}$$

□ Реакция окисления:

• окисление метилэтилкетона приводит к образованию смеси кислот (муравьиной, уксусной и пропионовой):

$$\begin{array}{ccc} & & & & \text{HCOOH} \\ & & & & & \text{CH}_3\text{COOH}; \\ & & & & & \text{C}_2\text{H}_5\text{COOH} \end{array}$$

• полное окисление (горение) ацетона:

$$0$$
 C
 C
 CH_3
 $+ 4O_2 \longrightarrow 3CO_2 + 3H_2O.$

 Реакция полимеризации: получение триацетона трипероксида (взрывчатое вещество):

Применение

Ацетон: производство лаков, лекарственных препаратов, взрывчатых веществ; в качестве растворителя в органическом синтезе. Производное ацетофетона (хлорацетофенон) — слезоточивое вещество, входит в состав баллончиков, применяемых силовыми структурами в качестве спецсредств для разгона демонстраций.

Карбоновые кислоты

Карбоновые кислоты — производные углеводородов, молекулы которых содержат одну или несколько карбоксильных групп —СООН. Состав карбоновых кислот характеризуется общей формулой $R(COOH)_m$, где m — число карбоксильных групп (определяет основность кислоты), R — остаток молекулы предельного, непредельного или ароматического углеводорода, полученный при замещении атомов водорода H на карбоксильную группу.

Некоторые представители класса

Классификация кислот в зависимости от радикала

- □ Предельные:
 - этановая (уксусная) кислота: О (жидкость);

 - метановая (муравьиная) кислота: С (жидкость); OH
 - гексадекановая (пальмитиновая) кислота:

С ОН (твердое вещество);
$$C_{15}H_{31}$$
 ОН

- пропановая (пропионовая) кислота: $\begin{array}{c} & \text{О} \\ & \text{П} \\ & \text{С}_2\text{H}_5 \end{array}$ (жидкость);
- октадекановая (стеориновая) кислота: $\begin{array}{c} & & \\ &$
- □ Непредельные:
 - пропеновая (акриловая) кислота: H₂C
 - линолевая кислота: C_5H_{11} $\stackrel{13}{\underset{12}{\longrightarrow}}$ $\stackrel{11}{\underset{10}{\longrightarrow}}$ $\stackrel{H_2}{\underset{7}{\longleftarrow}}$ СООН;

• линоленовая кислота:

$$^{17,18}C_2H_5$$
 $\xrightarrow{15}$ $\xrightarrow{13}$ $\xrightarrow{11}$ $\xrightarrow{11}$ $\xrightarrow{9}$ $\xrightarrow{470}$ $\xrightarrow{270}$ $\xrightarrow{17,18}$ $\xrightarrow{11}$ $\xrightarrow{11}$

• олеиновая кислота: $C_8^{11-18}H_{17}$ $\xrightarrow{9}$ COOH.

□ Ароматические:

нó

200

Классификация кислот в зависимости от числа карбоксильных групп

 $\ \square \$ Одноосновные (см. «Предельные кислоты»).

□ Двухосновные:

$$0$$
 0 $\| \| \|$ $C-C$ $OH;$

• глутаровая кислота: HOOC 3COOH

• адипиновая кислота: НООС 4СООН;

Получение

$$\square$$
 Окисление первичных спиртов:
 $H_2C \stackrel{CH_2OH}{\longrightarrow} + O_2 \stackrel{COOH}{\longrightarrow} + H_2O;$

□ окисление альдегидов:

$$2_{\text{H}_3\text{C}}$$
CHO + O_2 $\xrightarrow{\text{RAT.}}$ $2_{\text{H}_2\text{C}}$ COOH;

окисление алканов приводит к образованию смеси кислот,
 однако в случае бутана образует только уксусная кислота:

□ при гидролизе жиров образуется смесь высших карбоновых кислот и глицерин:

□ гидролиз галогенангидридов кислот:

- □ нагревание щелочи и угарного газа под давлением с последующим подкислением серной кислотой приводит к образованию муравьиной кислоты: $NaOH + CO \xrightarrow{t^2, p} HCOONa \xrightarrow{H^+} HCOOH$:
- реакция декарбоксилирования щавелевой кислоты приводит к образованию муравьиной кислоты:

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
C - C \\
OH
\end{array}$$
HCOOH + CO₂;

 \Box получение уксусной кислоты из метанола и угарного газа проводят в жестких условиях: CH $_3OH+CO \xrightarrow{-Rh-J_2}_{p,\,t^o} H_3C$

Химические свойства

Карбоновые кислоты относятся к кислородсодержащим соединениям с высокой реакционной способностью. Как и в случае со спиртами это обусловлено наличием в их молекулах полярных связей О—Н, С—О, С—Н. Для карбоновых кислот характерны реакции замещения (замещение атома водорода Н карбоксильной группы, замещение гидроксильной группы — ОН, замещение атома водорода Н у о-углеродного атома (ближайшего к карбоксильной группе атома углерода С).

- □ Реакция замещения (с разрывом связи О—Н):
 - реакция карбоновых кислот с активными металлами: $2RCOOH + Ca \rightarrow (RCOO)_2Ca + H_2;$
 - взаимодействие с основными оксидами: $2RCOOH + MgO \rightarrow (RCOO)_{9}Mg + H_{9}O;$
 - карбоновые кислоты реагируют со щелочами (реакция нейтрализации): 2RCOOH + 2KOH → 2RCOOK + H₂O;

- карбоновые кислоты реагируют с солями более слабых кислот: RCOOH + NaHCO $_3$ \to RCOONa + CO $_2$ + H $_2$ O.
- □ Реакция замещения (с разрывом связи С—О):
 - образование сложных эфиров (реакция этерификации):

• образование пептидной связи — С — N — при полу-

чении амидов:

• при взаимодействии карбоновых кислот с тионилхлоридом ${\rm SOCl}_2$ образуются галогенангидриды карбоновых кислот:

$$R - C$$
OH
 $+ SOCl_2 \longrightarrow R - C$
Cl
 $+ SO_2 + HCl;$

• при взаимодействии карбоновых кислот с галогенидами фосфора(V) ${\rm PCl}_5$ образуются галогенангидриды карбоновых кислот:

$$R - C$$
OH
 $+ PCl_5 \longrightarrow R - C$
Cl
 $+ POCl_3 + HCl;$

• в результате межмолекулярной дегидратации карбоновых кислот при пропускании паров кислот над оксидом фосфора ${\rm P_4O_{10}}$ образуются ангидриды:

$$2H_{3}C - C \bigvee_{OH}^{O} \xrightarrow{P_{4}O_{10}} H_{3}C - C \bigvee_{O}^{O} + H_{2}O;$$

 при взаимодействии карбоновых кислот с аммиаком и последующей термической обработки образуются амиды;

RCOOH
$$\xrightarrow{+NH_3}$$
 RCOONH₄ $\xrightarrow{t^\circ}$ \xrightarrow{R} $C = O + H_2O$.

□ Реакция замещения (с разрывом связи С — H): при облучении света и в присутствии хлорида фосфора(V) PCl_5 образуются α -галогенкарбоновые кислоты:

- □ Термическое превращение:
 - сплавление солей карбоновых кислот со щелочью приводит к образованию алканов: RCOONa $\xrightarrow{NaOH, I^o}$ RH + Na $_2$ CO $_3$ (см. «Алканы»);
 - муравьиная кислота в присутствии сильного водоотнимающего реагента (серной кислоты) превращается в оксид углерода(II) и воду: $HCOOH \frac{H_SO_4}{r_o} \to CO + H_2O$.
- □ Реакция окисления:
 - муравьиная кислота в присутствии перманганата калия ${\rm KMnO_4}$ достаточно легко окисляется до углекислого газа и воды: ${\rm HCOOH} \xrightarrow{{\rm KMnO_4}} {\rm CO_2} + {\rm H_2O};$

• для муравьиной кислоты характерны свойства альдегидов, например, реакция «серебряного зеркала»: $\frac{Ag,0}{NH,0H} \cdot Ag + CO_2 + H_2O \, (\text{см. «Альдегиды»}).$

Применение

Уксусная кислота: производство красителей, лекарственных средств, ВМС (ацетатных волокон); в быту и в органическом синтезе. Муравьиная кислота: в медицине (1,4%-ный раствор в качестве местного анестезирующего средства).

Сложные эфиры. Жиры. Мыла

Сложные эфиры — производные углеводородов, молекулы которых образованы в результате взаимодействия спиртов с органическими и неорганическими кислородсодержащими кислотами. Состав сложных эфиров характеризуется общей формулой

$$R-C$$
 , где R — углеводородный остаток карбоновой кислоты OR_1

(для муравьиной кислоты R соответствует атому водорода H), R_1 — углеводородный остаток спирта.

Жиры — смесь сложных эфиров высших карбоновых кислот и глицерина. В зависимости от химического строения остатков карбоновых кислот жиры разделяют на твердые и жидкие. $\mathcal{H}u\partial\kappa ue$ жиры характеризуются наличием остатков ненасыщенных высших карбоновых кислот (например, олеиновой $C_{17}H_{33}$ —СООН, линолевой $C_{17}H_{31}$ —СООН, линолевой $C_{17}H_{29}$ —СООН). $Teep\partial\omega e$ жиры содержат остатки насыщенных высших карбоновых кислот (например, пальмитиновой $C_{15}H_{31}$ —СООН, стеариновой $C_{17}H_{35}$ —СООН). Состав жиров описы-

$$\begin{array}{c} H_2C-O-C\overset{O}{-}R_1\\ H_2C-O-C\overset{O}{-}R_2, \text{где }R_1,R_2,R_3-\text{остатки}\\ H_2C-O-C\overset{O}{-}R_2\\ H_2C-O-C\overset{O}{-}R_3 \end{array}$$

высших карбоновых кислот.

Мыла — соли высших карбоновых кислот: пальмитат натрия $C_{15}H_{31}$ —COONа или стеарат натрия $C_{17}H_{35}$ —COONа.

Некоторые представители класса

- □ Этилацетат: $H_3C C$; OC_2H_5 OC_2H_5 OC_2H_3 ; OCH_3

- \Box пропилацетат: H_3C-C ; OC_3H_7 OC_3
- $\ \Box$ этилнитрат: O₂N ; $\ OC_2H_5$ $\ \Box$ амилацетат: H₃C -C , $\ OC_5H_{11}$
- $\hfill \square$ эфир пальмитиновой кислоты, трипальмитин:

$$H_2C-O-C-C_{15}H_{31}$$
 $H_2C-O-C-C_{15}H_{31}$;
 $H_2C-O-C-C_{15}H_{31}$

🗆 эфир пальмитиновой, стеариновой кислот, дипальмитостеа-

$$\begin{array}{c} H_2C - O - C & O \\ C_{15}H_{31} \\ \downarrow & \downarrow \\ HC - O - C & O \\ C_{15}H_{31} \\ \downarrow & \downarrow \\ H_2C - O - C - C_{17}H_{35} \end{array}$$

□ эфир олеиновой кислоты, триолеин:

$$H_2C - O - C - C_{17}H_{33}$$
 $HC - O - C - C_{17}H_{33}$;
 $H_2C - O - C - C_{17}H_{33}$;

🗆 эфир пальмитиновой, олеиновой и линоленовой кислот, паль-

$$\begin{array}{c} H_2C-O-C \overset{O}{-}C_{15}H_{31} \\ HC-O-C \overset{O}{-}C_{17}H_{33} \\ H_2C-O-C-C_{17}H_{31} \end{array}$$

Получение

□ Взаимодействие одноатомного спирта с органической кислотой:

(см. «Спирты»);

- \square взаимодействие одноатомного спирта с неорганической кислородсодержащей кислотой: $C_2H_5OH+HONO_2 \Longrightarrow C_2H_5-O-NO_2+H_2O;$
- взаимодействие многоатомного спирта с органическими (например, уксусной) и неорганическими (например, азотной)

🗆 при взаимодействии глицерина с высшими карбоновыми кислотами образуются жиры (реакция Бертло):

Химические свойства

□ Гидролиз:

$$C_2H_5-C_2H_5$$
 + $H_2O \stackrel{H^*,t^\circ}{\longleftrightarrow} C_2H_5-C_0H$ + C_2H_5OH ;

 при протекании водного, кислотного и ферментативного гидролиза тристеарина образуется глицерин и стеариновая кислота:

$$\begin{array}{c} H_{2}C - O - C \xrightarrow{O} C_{17}H_{35} \\ \downarrow \\ H_{2}C - O - C \xrightarrow{O} C_{17}H_{35} \\ \downarrow \\ H_{2}C - O - C \xrightarrow{O} C_{17}H_{35} \end{array} + 3H_{2}O \xrightarrow{f^{\circ}, H^{+}} \begin{array}{c} H_{2}C - OH \\ \downarrow f^{\circ}, H^{+} \\ \downarrow \\ H_{2}C - OH \end{array}$$

 при протекании щелочного гидролиза тристеарина образуется глицерин и стеарат натрия (натриевое мыло):

□ Реакция присоединения:

 гидрирование жидкого жира триолеина, содержащего остатки ненасыщенной олеиновой кислоты, приводит к образованию твердого жира тристеарина:

$$\begin{array}{c} H_2C-O-C \\ C_{17}H_{33} \\ HC-O-C \\ C_{17}H_{33} \\ H_2C-O-C \\ C_{17}H_{33} \\ \end{array} \begin{array}{c} H_2C-O-C \\ C_{17}H_{35} \\ HC-O-C \\ C_{17}H_{35} \\ H_2C-O-C \\ C_{17}H_{35} \\ \end{array} \\ \begin{array}{c} C_{17}H_{35} \\ H_{2}C-O-C \\ C_{17}H_{35} \\ H_{2}C-O-C \\ C_{17}H_{35} \\ \end{array}$$

 в результате реакции галогенирования триолеина происходит обесцвечивание бромной воды;

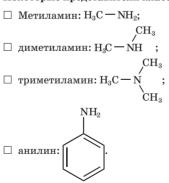
Применение

Сложные эфиры: в качестве растворителей (например, этилацетат $\mathrm{CH}_{\circ}\mathrm{COOC}_{\circ}\mathrm{H}_{\circ}$), ароматизаторов (см. таблицу).

Название эфира	Химическая формула	Х АРАКТЕРНЫЙ ЗАПАХ
Бензилацетат		Клубника, жасмин
Бутилбутират	0,000	Ананас
Изобутилацетат	→ o Å	Вишня
Метилфенил- ацетат		Мед

 \rightarrow

Окончание таблииы


Название эфира	Химическая формула	Характерный запах
Этилпентанат	0	Яблоко

Азотсодержащие соединения

Aмины

Амины — производные аммиака $\mathrm{NH_3}$, в молекулах которых от одного до трех атомов водорода H замещены на алифатический или ароматический остаток углеводорода. Состав аминов в зависимости от степени замещения аммиака характеризуется общей формулой $\mathrm{NH_2R}$ (для первичных аминов), $\mathrm{NHRR_1}$ (для вторичных аминов), $\mathrm{NRR_1R_2}$ (для третичных аминов), где R, R₁, R₂ — углеводородные радикалы.

Некоторые представители класса

Получение

□ Взаимодействие спиртов с аммиаком:

$$C_2H_5$$
 OH + H_5 NH $_2$ $\xrightarrow{{\rm Al}_2{\rm O}_3,\,t^\circ}$ $C_2H_5{\rm NH}_2$ + $H_2{\rm O}$ (см. «Спирты»);

- □ взаимодействие галогеналканов с аммиаком приводит к образованию первичных аминов: $CH_3CH_2Cl + NH_3 \rightarrow CH_3CH_2NH_2 + HCl$ (см. «Галогенпроизводные углеводородов»);
- $\ \square$ при избытке галогеналкана образуются вторичные и третичные амины: CH $_3$ CH $_2$ NH $_2$ + CH $_3$ CH $_2$ Cl+ NH $_3$ → (CH $_3$ CH $_2$) $_2$ NH+ + NH $_4$ Cl , (CH $_3$ CH $_2$) $_2$ NH+ CH $_3$ CH $_2$ Cl+ NH $_3$ → (CH $_3$ CH $_2$) $_3$ NH+ NH $_4$ Cl;
- □ в результате восстановления нитросоединений образуются ароматические амины (реакция Зинина):

$$\begin{array}{c|c} NO_2 & & \\ \hline & t^{\circ, \text{ Rat.}} \end{array} \begin{array}{c} NH_2 \\ \hline \end{array}.$$

Химические свойства

Из-за наличия у атома азота N аминогруппы — NH_2 неподеленной электронной пары, принимающей участие в образовании донорно-акцепторной связи, алифитические и ароматические амины — слабые основания. Алифатический углеводородный радикал, в отличие от ароматического, «накачивает» электронную плотность на атом азота, в результате чего аммиак по основным свойствам занимает промежуточное положение между алифатическим аминами и ароматическим аминами.

- □ Реакции с участием аминогруппы:
 - образование иона метил-аммония и гидроксид-иона, отвечающего за основные свойства алифатических аминов в водных растворах:

$$\longleftrightarrow \begin{bmatrix} H \\ H_{3}C - N \longrightarrow H \\ H \end{bmatrix}^{+} + OH^{-};$$

 анилин при взаимодействии с водой образует очень слабое основание гидроксид фениламмония:

$$\begin{array}{c|c} & & \\ & + & H_2O \end{array} \longleftrightarrow \begin{array}{c|c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

- при взаимодействии алифатических аминов с кислотами образуются соли: $\mathrm{CH_3NH_2} + \mathrm{HCl} \rightleftarrows [\mathrm{CH_3NH_3}]^+ + \mathrm{Cl}^-;$
- при взаимодействии ароматических аминов с кислотами образуются соли:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

- реакция солей замещенного аммония с сильными щелочами происходит с образованием летучего метиламина: $[CH_{\circ}NH_{\circ}]Cl + NaOH \rightarrow CH_{\circ}NH_{\circ} + NaCl + H_{\circ}O.$
- Реакции с участием бензольного кольца (для ароматических аминов):

$$\begin{array}{c} NH_2 \\ + 3Br_2 \longrightarrow \\ Br \\ \end{array} + 3HBr$$

(поскольку аминогруппа — заместитель I рода, при взаимодействии анилина с бромом ${\rm Br}_2$ происходит замещение атомов водорода H бензольного кольца в орто- и пара-положениях относительно аминогруппы).

 \square Реакция окисления: $4\text{CH}_3\text{NH}_2 + 9\text{O}_2 \xrightarrow{t^\circ} 4\text{CO}_2 + 10\text{H}_2\text{O} + 2\text{N}_2$ (при горении аминов образуется углекислый газ, вода и азот).

Применение

Анилин: производство ВМС (полиуретанов и синтетических каучуков), красителей, взрывчатых веществ, лекарственных препаратов (сульфаниламидные ЛС). Триэтиламин $N(C_2H_5)_3$: в качестве ракетного топлива.

Аминокислоты

Аминокислоты — углеводородные производные, молекулы которых содержат две функциональные группы: аминогруппу — NH $_2$ и карбоксильную группу — COOH. Состав аминокислот характеризуется общей формулой (NH $_2$) $_m$ R(COOH) $_n$ (n, m=1 или 2), где R — углеводородный радикал, n — число карбоксильных групп (определяет основность кислоты), m — число аминогрупп. Аминокислоты классифицируют по положению аминогрупп относительно карбоксильной группы. Выделяют:

α-аминокислоты (если аминогруппа связана с атомом углерода С, расположенным рядом с карбоксильной группой):

$$H_{3}C - C - C - C - C$$

β-аминокислоты (если аминогруппа расположена относительно карбоксильной группы через один атом углерода С):

γ-аминокислоты (если аминогруппа расположена относительно карбоксильной группы через два атома углерода С):

Некоторые представители класса

20 важнейших аминокислот, принимающих участие в биосинтезе белка (в скобках указаны условные общепринятые трехбуквенные обозначения).

Формула	Название
O OH NH ₂	Аланин (Ala)
NH ₂ NH OH	Аргинин (Arg)
$\begin{array}{c} O \\ OH \\ \stackrel{\stackrel{i}{_{}{}{}}}{{}{$	Аспарагиновая кислота (Asp)
$\begin{array}{c c} O & & NH_2 \\ \hline OH & & & NH_2 \\ \hline NH_2 & O & \end{array}$	Аспарагин (Asn)

Продолжение таблицы

Формула	Название
OH-O	Валин (Val)
OH NH ₂	Гистидин (His)
NH ₂ OH	Глицин (Gly)
$\begin{array}{c c} & \operatorname{NH}_2 \\ \operatorname{OH} & & \operatorname{OH} \\ & \operatorname{O} & & \operatorname{O} \end{array}$	Глутаминовая кислота (Glu)
$\begin{array}{c c} & \text{NH}_2 \\ \text{NH}_2 & \text{OH} \\ \\ \text{O} & \text{O} \end{array}$	Глутамин (Gln)
$O \longrightarrow NH_2$	Изолейцин (IIe)

Продолжение таблицы

Формула	Название
OH H	Лейцин (Leu)
OH NH ₂ NH ₂	Лизин (Lys)
$OH = \sum_{\stackrel{\stackrel{\circ}{=}}{N}H_2} S$	Метионин (Met)
OH NH	Пролин (Pro)
O NH ₂ OH OH	Серин (Ser)
NH ₂ OH	Тирозин (Туг)

Окончание таблииы

Формула	Название
OH OH- OH- OH-	Треонин (Thr)
O OH NH ₂	Триптофан (Тгр)
O OH NH ₂	Фенилаланин (Phe)
$\begin{array}{c} O \\ \text{OH} \\ \text{NH}_2 \\ \hline -\text{SH} \end{array}$	Цистеин (Cys)

Получение

 \square Взаимодействие α -галогенкарбоновых кислот с аммиаком (лабораторный способ получения α -аминокислот):

$$\begin{array}{c} \text{Cl} \\ \text{H}_3\text{C} - \text{CH-C} \\ \text{OH} \end{array} + 2 \text{ NH}_3 \longrightarrow \\ \text{H}_3\text{C} - \text{CH-C} \\ \text{OH} \end{array} + \text{NH}_4\text{Cl};$$

□ кислотный гидролиз белков (полипептиды содержат более 10 остатков аминокислот, олигопептиды — менее 10 аминокислотных остатков): белки — $\xrightarrow{\text{H}_3\text{O}^+,\,t^\circ}$ — полипептиды — $\xrightarrow{\text{H}_3\text{O}^+,\,t^\circ}$ — олигопептиды — $\xrightarrow{\text{H}_3\text{O}^+,\,t^\circ}$ — аминокислоты.

Химические свойства

Наличие аминогруппы и карбоксильной группы обусловливает двойственность (амфотерность) свойств аминокислот.

□ Аминокислоты вступают в реакцию с кислотами с образованием солей (в данном случае образуется солянокислый глицин):

 взаимодействие аминокислот со щелочью происходит с образованием солей:

$$\begin{array}{c} CH_2C \\ \downarrow \\ NH_2 \end{array} OH \begin{array}{c} + NaOH \longrightarrow \begin{array}{c} CH_2C \\ \downarrow \\ NH_2 \end{array} O-Na \\ + H_2O; \end{array}$$

□ аминогруппа и карбоксильная группа могут взаимодействовать между собой, образуя внутренние соли (цвиттер-ионы):

$$\begin{array}{c} \text{COOH} \\ \text{R} & \longleftrightarrow \\ \text{NH}_2 \end{array} \stackrel{\text{COO}^-}{\longleftrightarrow} \\ \text{R} & \vdots \\ \text{NH}_3^+ \end{array}$$

 \square при водной диссоциации моноаминодикарбоновых кислот формируется кислая среда (pH < 7):

 \square при водной диссоциации диаминомонокарбоновых кислот формируется щелочная среда (pH > 7):

$$\begin{array}{c} \text{COOH} & \text{COO}^- \\ | & \text{R} - \text{NH}_2 & \rightleftharpoons & \text{R} - \ddot{\text{N}}\text{H}_2 + \text{H}^+ & \rightleftharpoons & \text{R} - \ddot{\text{N}}\text{H}_2 + \text{H}^- \\ | & \text{NH}_2 & & \text{NH}_2 & & \text{NH}_3^+ \\ | & \text{NH}_2 & & & \text{NH}_3^+ & + \text{OH}^-; \\ | & & \text{R} - \text{NH}_3^+ + \text{OH}^-; \\ | & & & \text{NH}_3^+ & & \\ \end{array}$$

□ взаимодействие двух различных молекул аминокислот приводит к образованию дипептида, свободные функциональные группы которого могут взаимодействовать с другой аминокислотой с образованием трипептида и т. д. (вплоть

 реакция поликонденсации ε-аминокапроновой кислоты идет с образованием капрона:

$$n \underset{\mathbf{H}}{\mathbf{H}} \underbrace{\mathbf{C}}_{\mathbf{H}_{2}} \underbrace{\mathbf{C}}_{\mathbf{O}}^{\mathbf{O}} \xrightarrow{-(n-1)\mathbf{H}_{2}\mathbf{O}} \underbrace{+ \underset{\mathbf{N}}{\mathbf{H}}}_{\mathbf{C}} \underbrace{\mathbf{C}}_{\mathbf{H}_{2}} \underbrace{\mathbf{C}}_{\mathbf{J}_{5}}^{\mathbf{O}} \underbrace{- \underset{\mathbf{N}}{\mathbf{H}}}_{\mathbf{J}_{5}}$$

Применение

В качестве пищевых добавок, для получения лекарственных и косметических средств, красителей, ВМС (волокон и пленок).

Белки

Белки — природные высокомолекулярные соединения, состоящие из остатков α -аминокислот. Между собой α -аминокислоты

соединены при помощи пептидных связей — С — N —. Молекуля | н

белка может содержать от 100 до нескольких тысяч аминокислотных остатков.

Уровни организации белковых молекул:

- □ первичная структура: последовательность аминокислотных фрагментов в полипептидной цепи молекулы белка:
 NH,—Ala—Gly—Phe—Cys—Glu—COOH;
- $\hfill \square$ вторичная структура: существование полипептидной цепи в виде винтовой спирали за счет образования водородных

связей между группами $\stackrel{\textstyle 1}{\stackrel{\textstyle 1}{\stackrel{}}{\stackrel{}}}$ и $\stackrel{\textstyle 1}{\stackrel{\textstyle 1}{\stackrel{}}{\stackrel{}}}$, разделенных тремя

— Ё — N — | | Н | аминокислотными остатками: | | О

□ третичная структура: существование спиралеподобной полипептидной цепи в виде клубка за счет образования дисульфидных

—S—S —, сложноэфирных
$$\bigcirc$$
 С \bigcirc) и водородных связей между группами —SH, —OH, —NH $_2$, —COOH;

 четвертичная структура: пространственное расположение нескольких полипептидных цепей, скрученных в виде клубков (например, сложная молекула белка гемоглобина).

По химическому составу белки делятся на npomeuhbi (включают только остатки аминокислот) и $npomeu\partial bi$ (помимо аминокислотных остатков состоят из ионов металлов, гетероциклических соединений, углеводов и др.).

В зависимости от отношения длины полипептидной цепи молекулы к ее ширине белки подразделяются на глобулярные (отношение длины молекулы к ширине меньше 10): альбумины, глобулины, протамины (растворимы в воде, кислотах, щелочах) и фибриллярные (отношение длины молекулы белка к ширине больше 10): кератин, коллаген, фибрион (нерастворимы в воде).

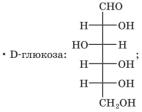
Химические свойства

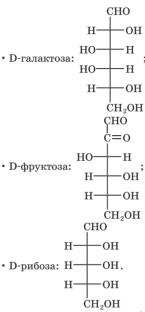
 □ Гидролиз белков идет вплоть до образования мельчайших фрагментов — аминокислот;

$$\begin{array}{c|c} H & O \\ \hline \\ H_2N & OH \\ \hline \\ + H_2N & OH \\ \end{array} \xrightarrow{H_2O} H_2N \xrightarrow{OH} +$$

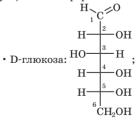
□ денатурация — процесс разрушения третичной структуры белка под действием сильных кислот, оснований, солей тяжелых металлов;

- □ биуретовая реакция специфическая цветная (происходит фиолетовое окрашивание) реакция, указывающая на наличие пептидных связей при воздействии на щелочной раствор белка раствора соли меди(II);
- □ ксантопротеиновая реакция специфическая цветная (происходит желтое, переходящее в оранжевое окрашивание) реакция, указывающая на наличие ароматического ядра в остатках аминокислот при воздействии на раствор белка последовательно концентрированной азотной кислоты и раствора шелочи.

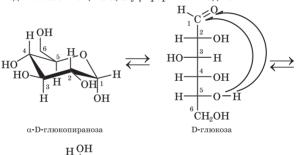

Углеводы

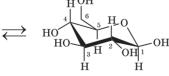

Углеводы — класс природных соединений, с химической точки зрения — полигидроксикарбонильные соединения. Содержат несколько гидроксильных групп — ОН и одну (моносахариды) или несколько (полисахариды) альдегидных $\stackrel{\leftarrow}{\text{C}}=0$ или кетогрупп

С=О. Состав углеводов характеризуется общей формулой $C_n(H_2O)_m$ $(n \ge 0, m \ge 0)$, где n — число атомов углерода C в молекуле, m — число молекул воды (формально углеводы — соединения углерода C и воды H_2O , отсюда и названии — yzne- $so\partial bi$).


Некоторые представители класса

□ Моносахариды (формулы Фишера):




 Оптические изомеры глюкозы (зеркальные отображения друг друга) — D-и L-формы;

$$H_{1C}$$
 О $HO \xrightarrow{2} H$ $HO \xrightarrow{3} OH$ $HO \xrightarrow{4} H$ $HO \xrightarrow{5} H$ CH_2OH

Равновесное состояние между ациклической альдегидной формой D-глюкозы (формула Фишера) и циклическими таутомерными формами (формулы Хеуорса). Циклические структуры существуют в виде двух изомеров: у α-формы гидроксильная группа при первом углеродном атоме находится под плоскостью цикла, α у β-формы — над ней:

β-D-глюкопираноза

□ Дисахариды:

· caxaposa: H OH HOH₂C OH HOH₂C OH CH₂OH

• лактоза:

□ Полисахариды:

• амилоза:
$$HOH$$
 HOH
 HOH
 OH
 OH

• амилопектин:

крахмал (20–30 % амилоза + 70–80 % амилопектин);

Моносахариды

Получение

При ферментативном гидролизе олигосахаридов всегда образуются моносахариды: крахмал и целлюлоза гидролизуются до α - и β -глюкозы соответственно: $(C_6H_{10}O_5)_n \xrightarrow{+H_2O}_{\text{ферменты}}$

$$\xrightarrow[\text{ферменты}]{\text{+H}_2O} + (C_6H_{10}O_5)_m \xrightarrow[\text{ферменты}]{\text{+H}_2O}} C_{12}H_{22}O_{11} \xrightarrow[\text{ферменты}]{\text{+H}_2O}} nC_6H_{12}O_6;$$

□ при кислотном гидролизе дисахаридов также образуются моносахариды: например, сахароза гидролизуется до α -глюкозы и β -фруктозы: $C_{12}H_{22}O_{12}+H_2O-\frac{t^{\alpha},H^{\gamma}}{2}$ \rightarrow $C_6H_{12}O_6+C_6H_{12}O_6$.

Химические свойства

Моносахариды — химически активные вещества, что обусловлено наличием карбонильной группы (в ациклических формах), полуацетальной гидроксильной формы (в циклических формах) и гидроксильных групп (как в открытых, так и циклических формах).

- □ Реакция с участием карбонильной группы:
 - гидрирование глюкозы приводит к образованию многоатомного спирта — сорбита:

$$\begin{array}{c} O \searrow_{C} \cdot H \\ H - C - OH \\ C - OH \\ C +_{2}OH \\ \end{array}$$

$$\begin{array}{c} CH_{2}OH \\ CH_{2}OH \\ CH_{2}OH \\ \end{array}$$

 качественная реакция на глюкозу в качестве альдегида приводит к образованию глюконовой кислоты;

(см. «Альдегиды»);

 качественная реакция на глюкозу в качестве альдегида приводит к образованию глюконовой кислоты;

(см. «Альдегиды»):

• при воздействии на моносахариды более сильных окислителей (например, азотной кислоты HNO₂) происходит образование двухосновной глюкаровой кислоты:

образование двухосновной глюкаров

О С Н СООН

$$H-C-OH$$
 $H-C-OH$
 $H-C-OH$ $H-C-OH$
 $H-C-OH$ $H-C-OH$
 $H-C-OH$ $H-C-OH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$

- □ Реакция с участием гидроксильных групп:
 - на холоде реакция глюкозы с гидроксидом меди(II) приводит к образованию глюконата меди (качественная реакция на многоатомные спирты):

$$\begin{array}{c} 2 C_6 H_{10} O_4 < \stackrel{OH_2}{\frown} + Cu(OH)_2 \xrightarrow{-t^\circ = 0 \circ C} \\ OH & H \\ \xrightarrow{t^\circ = 0 \circ C} C_6 \ H_{10} O_4 < \stackrel{O}{\bigcirc} C_4 & O \\ C_6 \ H_{10} O_4 + \ 2 H_2 O \\ \\ (\text{см. *Спирты*);} \end{array}$$

• в результате метилирования α -глюкозы образуются про-

$$\xrightarrow{Ag_2O} H_3CO \xrightarrow{H} OCH_3 + 5HI$$

$$H_3CO \xrightarrow{H} OCH_3$$

 реакция уксусного ангидрида с глюкозой происходит с образованием сложного эфира:

$$HOH$$
 HOH
 HOH

• в результате реакции глюкозы со спиртами образуются

- □ Реакция ферментативного расщепления:
 - при спиртовом брожении глюкозы образуется этиловый спирт: $C_6H_{12}O_6 \rightarrow 2C_9H_5OH + 2CO_2$;
 - при лимоннокислом брожении глюкозы образуется лимонная кислота;

$$\begin{array}{c} \text{COOH} \\ \text{C}_6\text{H}_{12}\text{O}_6 \stackrel{[0]}{\longrightarrow} \text{HOOC} \stackrel{\text{H}_2}{\longrightarrow} \overset{\text{COOH}}{\text{C}} \stackrel{\text{H}_2}{\longrightarrow} \text{COOH}; \\ \text{OH} \end{array}$$

 при маслянокислом брожении глюкозы образуется н-бутановая (масляная) кислота:

$$C_6H_{12}O_6 \longrightarrow H_3C \xrightarrow{H_2} COOH + 2H_2 + 2CO_2;$$

• молочнокислое брожение глюкозы приводит к образованию молочной кислоты: С $_6{\rm H}_{12}{\rm O}_6 \longrightarrow 2{\rm H}_3{\rm C-C-COOH}_0$ OH

Дисахариды

Получение

Получение сахарозы происходи при взаимодействии полуацетальных гидроксилов α -глюкозы и β -фруктозы с образованием α -1,2-гликозидной связи:

$$HOH$$
 HOH_2C
 HOH

$$\overset{H}{\longleftrightarrow} \overset{H}{\longleftrightarrow} \overset{H}$$

 $\hfill \square$ получение мальтозы происходит при взаимодействии полуацетального и спиртового гидроксилов двух молекул а-глюкозы

с образованием α-1,4-гликозидной связи:

$$\xrightarrow{\text{HOH}} \xrightarrow{\text{HOH}} \xrightarrow{\text{$$

• получение целлобиозы происходит при взаимодействии полуацетального и спиртового гидроксилов двух молекул β -глюкозы с образованием β -1,4-гликозидной связи:

 получение лактозы происходит при взаимодействии полуацетального гидроксила молекулы β-галактозы и спиртового гидроксила молекулы β-глюкозы с образованием β-1,4-гликозидной связи:

целлобиоза

$$\overset{\text{OH}}{\longleftarrow_{\text{H}_2\text{O}}} \overset{\text{OH}}{\longleftarrow_{\text{H}}} \overset{\text{OH}}{\longrightarrow_{\text{H}}} \overset{\text{H}}{\longrightarrow_{\text{H}}} \overset{\text{H}} \overset{\text{H}}} \overset{\text{H}}{\longrightarrow_{\text{H}}} \overset{\text{H}} \overset{\text{H}}{\longrightarrow_{\text{H}}} \overset{\text{H}}{\longrightarrow_{\text{H}}} \overset{\text$$

Химические свойства

- □ Отсутствие полуацетального гидроксила в молекулах некоторых дисахаридов (например, сахарозы) исключает возможность реакций, характерных для альдегидов (реакции окисления с участием Ag₂O и Cu(OH)₂). Наличие нескольких спиртовых гидроксилов обуславливает реакции, характерные для многоатомных спиртов. Кроме того, для всех дисахаридов характерны реакции гидролиза;
- \square сахароза взаимодействует на холоде с гидроксидом меди(II) $\mathrm{Cu}(\mathrm{OH})_2$ с образованием хелатного комплекса ярко-синего цвета сахарата меди:

$$2^{\textstyle C_{12}H_{20}O_9} {\displaystyle \swarrow}_{\scriptstyle OH}^{\scriptstyle OH} + {\rm Cu(OH)_2} \xrightarrow{ \tiny f^\circ=0\, {}^\circ{\rm C} }$$

$$\xrightarrow{f^{\circ}=0\,{}^{\circ}\mathrm{C}} C_{12}\mathrm{H}_{20}\mathrm{O}_{9} \underbrace{\overset{\circ}{\underset{O}{\bigvee}}}_{\mathrm{U}} C_{12}\mathrm{H}_{20}\mathrm{O}_{9} + 2\mathrm{H}_{2}\mathrm{O}.$$

Полисахариды

Химические свойства

Вследствие наличия гидроксильных групп полисахариды (крахмал, целлюлоза) проявляют свойства многоатомных спиртов. Однако полисахариды плохо растворимы в воде, поэтому качественная реакция на многоатомные спирты (реакция с гидроксидом меди(II)) для них не характерна.

□ Гидролиз:

$$\begin{array}{c} ({\rm C_6H_{10}O_5})_n \xrightarrow[{}^{+{\rm H_2O}}]{}^{+{\rm H_2O}} \\ \bullet & {\rm крахмал} \\ \xrightarrow[{}^{+{\rm H_2O}}]{}^{+{\rm H_2O}} \\ \bullet & {\rm capping} \end{array} \\ \xrightarrow[{}^{+{\rm H_2O}}]{}^{+{\rm H_2O}} \\ \bullet & {\rm capping} \end{array} \\ C_{12}{\rm H_{22}O_{11}} \xrightarrow[{}^{+{\rm H_2O}}]{}^{+{\rm H_2O}} \\ \bullet & {\rm products} \end{array} \\ \xrightarrow[{}^{+{\rm Klioko3a}}]{}^{+{\rm Klioko3a}}$$

 гидролиз целлюлозы, как и крахмала, идет ступенчато с образованием моносахаридов:

$$\begin{array}{c} ({\rm C_6H_{10}O_5})_n \xrightarrow{+{\rm H_2O}} ({\rm C_6H_{10}O_5})_m \xrightarrow{+{\rm H_2O}} \\ \\ {\rm _{dерменты}} \to ({\rm _{12}H_{20}O_5})_m \xrightarrow{+{\rm H_2O}} n{\rm _{C_6H_{12}O_6}} \end{array}$$

- □ Реакции с участием гидроксильных групп (на примере целлюлозы, поскольку эфиры крахмала не имеют большого практического значения):
 - взаимодействие целлюлозы с неорганическими кислотами (например, азотной) с образованием тринитропеллюлозы:

$$\left[\begin{array}{c} \mathbf{C_6H_7O_2} \overset{\mathbf{OH}}{\longleftarrow} \mathbf{OH} \\ \mathbf{OH} \\ \mathbf{OH} \end{array}\right]_n + 3n\mathbf{HNO_3} \overset{\mathbf{H_2SO_4}}{\longrightarrow} \left[\begin{array}{c} \mathbf{C_6H_7O_2} \overset{\mathbf{ONO_2}}{\longleftarrow} \mathbf{ONO_2} \\ \mathbf{ONO_2} \\ \end{array}\right]_n + 3n\mathbf{H_2O};$$

 взаимодействие целлюлозы с органическими кислотами (например, уксусной) с образованием тринитроцеллюлозы:

$$\begin{bmatrix} \mathbf{C}_{6}\mathbf{H}_{7}\mathbf{O}_{2} & \underbrace{\mathbf{O}\mathbf{H}}_{\mathbf{O}\mathbf{H}} \\ \mathbf{O}\mathbf{H} \end{bmatrix}_{n}^{+} 3n\mathbf{A}\mathbf{c}\mathbf{O}\mathbf{H} \xrightarrow{\mathbf{H}_{2}\mathbf{SO}_{4}} \begin{bmatrix} \mathbf{C}_{6}\mathbf{H}_{7}\mathbf{O}_{2} & \underbrace{\mathbf{O}\mathbf{A}\mathbf{c}}_{\mathbf{O}\mathbf{A}\mathbf{c}} \\ \mathbf{O}\mathbf{A}\mathbf{c} \end{bmatrix}_{n}^{+} 3n\mathbf{H}_{2}\mathbf{O},$$

$$\mathbf{C}_{\mathbf{D}}\mathbf{A}\mathbf{c} = \begin{bmatrix} \mathbf{H}_{3}\mathbf{C} \\ \mathbf{C}_{\mathbf{C}}\mathbf{O}_{\mathbf{C}} \end{bmatrix}_{n}^{+} \mathbf{C}_{\mathbf{D}}\mathbf{C}_{\mathbf{C}}$$

Термические превращения:
• нагревание целлюлозы без доступа воздуха приводит к об разованию древесного угля $C: (C_6H_{10}O_5)_n \xrightarrow{t^o} C + H_2O + H_3O + H_3O$
целлюлоза
+ ЛОВ, где ЛОВ — летучие органические вещества;
• горение целлюлозы идет с образованием углекислого газа
и воды: $(\mathrm{C_6H_{10}O_5})_n + 6n\mathrm{O_2} \xrightarrow{t^\circ} 6n\mathrm{CO_2} + 5n\mathrm{H_2O}$.
целлюлоза
Качественная реакция на крахмал: $(C_6H_{10}O_5)_n+I_2 \longrightarrow$ сине
крахмал
филополого окраниванно при размиолой влин краумал

филолетовое окрашивание (при взаимодействии крахмала с йодом I происходит образование комплексного соединения, которое разрушается и обесцвечивается при нагревании).

Применение

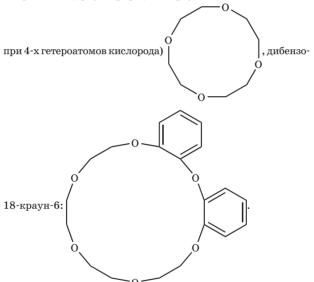
Глюкоза: медицина (укрепляющее лечебное средство), кондитерское дело, пивоварение (спиртовое брожение глюкозы). Целлюлоза: производство бумаги, ваты, шелка.

Гетероциклические соединения

Гетероциклические соединения — углеводороды, молекулы которых в циклической структуре содержат не только атомы углерода C, но и атомы других элементов (обычно азота N, кислорода O, серы S).

Некоторые представители класса

Классификация в зависимости от природы гетероатома


□ Азотсодержащие соединения: пиперидин □ кислородсодержащие соединения: тетрагидрофуран □ серосодержащие соединения: триметиленсульфид тиофен Классификация в зависимости от насыщенности цикла

□ Насыщенные гетеросоединения: пирролидин

Кл	ассификация в зависимости от количества членов в цикле
	Трехчленные гетероциклы: этиленоксид О \longrightarrow , этилени-
	мин НХ ;
Ш	четырех членные гетероциклы: 1,3 пропиленимин, , , ,
	триметиленсульфид $\begin{bmatrix} & & & & & & & & & & \\ & & & & & & & & $
	пятичленные гетероциклы: пиррол // , тиофен
	S,
	шестичленные гетероциклы: пиперидин NH , тетра-
	гидропиран ;
	семичление гетероциклы: гексаметиленимин $\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$,

□ макроциклы (краун-эфиры): 12-краун-4 (12 членов в цикле

Классификация в зависимости от числа циклических фрагментов

□ Моноциклические соединения: пиррол , пиридин

оснований: урацила
$$\stackrel{N}{\underset{N}{\bigvee}}$$
 — основа пиримидиновых оснований: урацила $\stackrel{N}{\underset{N}{\bigvee}}$, тимина $\stackrel{N}{\underset{N}{\bigvee}}$, цитозина $\stackrel{N}{\underset{N}{\bigvee}}$, $\stackrel{N}{\underset{N}{\bigvee}}$, $\stackrel{N}{\underset{N}{\bigvee}}$, $\stackrel{N}{\underset{N}{\bigvee}}$

□ полициклические соединения (в том числе конденсирован-

ные): индол
$$\stackrel{H}{\underset{N}{\bigvee}}$$
, хинолин $\stackrel{N}{\underset{N}{\bigvee}}$, пурин $\stackrel{H}{\underset{N}{\bigvee}}$ — основа пуриновых оснований: аденина $\stackrel{N}{\underset{N}{\bigvee}}$ $\stackrel{N}{\underset{N}{\bigvee}}$

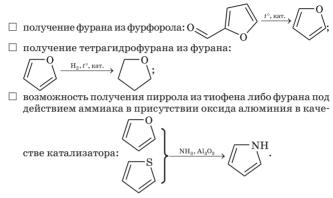
Пуриновые и пиримидиновые основания, а также сахарный остаток и фосфатная группа входят в состав нуклеотидов, из которых состоят высокомолекулярные соединения —

нуклеиновые кислоты. Пример мономерного звена нуклеи-

Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) — важнейшие нуклеиновые кислоты.

Получение

□ Получение пиррола из ацетилена:


$$HC$$
 $CH \xrightarrow{NH_3, t^{\circ}, Fe_2O_3}$
 HC
 HC
 NH
 HC
 NH

□ получение пирана из глутарового альдегида:

$$O \xrightarrow{+H_2O} O \xrightarrow{-2HCl} O;$$

□ получение тиофена из бутадиена:

$$\xrightarrow{\text{H}_2\text{S,Al}_2\text{O}_3} \overset{\text{S}}{\longleftrightarrow}$$

Химические свойства

Для трех-, четырехчленных гетероциклов характерны реакции с раскрытием циклов. Пяти-, шестичленные ненасыщенные гетероциклы обладают некоторой ароматичностью и вступают в реакции замещения (замещение атома водорода Н), проявляют свойства оснований (реагируют с минеральными кислотами).

□ Реакции с раскрытием цикла:

□ Реакции замещения:

• реакция сульфирования тиофена

разованию тиофенсульфокислоты:

$$S \longrightarrow + H_2SO_4 \longrightarrow S \longrightarrow + H_2O_5$$

• реакция ацилирования пиррола NH приводит к об-

разованию 2-ацетилпиррола:

$$\begin{array}{c} \text{NH} \\ \text{+ (CH}_3\text{CO)}_2\text{O} \\ \end{array} \rightarrow \begin{array}{c} \text{H}_3\text{COC} \\ \text{NH} \\ \text{+ CH}_3\text{COOH}; \end{array}$$

• реакция нитрования хинолина приводит

к образованию 8-нитрохинолина:

$$+ \text{ HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4} + \text{H}_2\text{O}.$$

- □ Реакции гетероциклов как оснований:
 - взаимодействие хинолина с соляной кислотой приводит к образованию хинолинийхлорида:

$$+ HCl \longrightarrow \begin{bmatrix} H \\ N \end{bmatrix}^{+} Cl^{-};$$

• взаимодействие 8-оксихинолина с ионами тяжелых металлов (Cu^{2+} , Zn^{2+} , Co^{2+} , Ni^{2+}) приводит к образованию комплексных соединений — хелатных комплексов:

$$\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{OMe}
\end{array}$$

Применение

Тетрагидрофуран: органический синтез; фурфурол: исходное сырье при получении лекарственных средств (фурацилин), по-

парфюмерия (в качестве фиксатора запахов), производство лекарственных средств.

Высокомолекулярные соединения

Высокомолекулярные соединения (ВМС) — природные или синтетические материалы, молекулы которых содержат повторяющиеся группировки атомов, называемые мономерами. Число таких повторяющихся группировок атомов называют степенью

$$nonumepuзaции\ (n)\colon n=\frac{M_r(\text{полимера})}{M_r(\text{мономера})}, \text{где}\ M_r(\text{полимера}) \longrightarrow \text{сред-}$$

няя молекулярная масса полимера, $M_{\rm r}$ (мономера) — молекулярная масса мономера.

Классификация

По способи поличения

- □ Природные ВМС (целлюлоза, крахмал, белки);
- искусственные или переработанные природные ВМС (эфиры целлюлозы);
- □ синтетические ВМС (капрон, полиэтилен, полистирол).

По свойствам и применению

- □ Пластмассы (полипропилен, тефлон);
- □ эластомеры (бутадиеновый и хлоропреновый каучуки);
- □ волокна (лавсан, капрон, ацетатное волокно).

Получение

 Реакция полимеризации (одинаковые молекулы мономеров соединяются в полимеры за счет разрыва двойных связей);

$$n\Big(\underset{\mathbf{H}_2\mathbf{C}}{\overset{\mathbf{C}\mathbf{H}_2}{\triangleright}} \Big) \xrightarrow{_{\mathrm{KAT.}}} \Big(\underset{\mathbf{H}_2}{\overset{\mathbf{H}_2}{\triangleright}} \Big)_n \Big($$
получение полиэтилена):

□ получение поливинилхлорида (ПВХ):

$$n \Big(\begin{matrix} \mathbf{Cl} \\ \mathbf{I} \\ \mathbf{CH} \end{matrix} \Big) \longrightarrow \underbrace{\left(\begin{matrix} \mathbf{Cl} \\ \mathbf{I} \\ \mathbf{H}_2 \end{matrix} \right)}_{\mathbf{C}} ;$$

□ получение полистирола:

$$n\binom{\overset{C_{6}H_{5}}{\overset{}{}_{C}H}}{\overset{C}{\overset{}{}_{C}H_{5}}}\longrightarrow \underbrace{\binom{\overset{C_{6}H_{5}}{\overset{}{}_{C}}}{\overset{\overset{}{\overset{}{}_{C}H_{5}}}{\overset{}{\overset{}{}_{C}H_{5}}}}_{H_{2}};$$

 реакция сополимеризации (различные молекулы мономеров соединяются за счет разрыва двойных связей):

$$n\binom{\overset{C_{6}H_{5}}{\overset{1}{\smile}}}{\overset{1}{\smile}} + n\binom{\overset{H}{\overset{C}{\smile}}}{\overset{C}{\smile}} + \binom{\overset{C}{\smile}}{\overset{C}{\smile}} + \binom{\overset{H}{\smile}}{\overset{C}{\smile}} + \binom{\overset{C_{6}H_{5}}{\smile}}{\overset{C}{\smile}} + \binom{\overset{C}{\smile}}{\overset{C}{\smile}} + \binom{\overset{C}{\smile}}$$

(получение бутадиенстирольного каучука из молекул бутадиена-1,3 и стирола);

□ реакция поликонденсации (одинаковые либо различные молекулы мономеров соединяются за счет взаимодействия функциональных групп, в результате которого отщепляется низкомолекулярный продукт, например вода):

ние фенолформальдегидной смолы);

 \square получение ацетатного волокна (триацетилцеллюлозы) в результате воздействия уксусного ангидрида на целлюлозу ($C_6H_{10}O_5$), (низкомолекулярный продукт реакции — уксусная кислота CH_3COOH):

$$\begin{bmatrix} C_6H_7O_2 & OH \\ OH \\ OH \end{bmatrix}_n + 3nAc_2O \longrightarrow \begin{bmatrix} C_6H_7O_2 & OAc \\ OAc \end{bmatrix}_n + 3nAcOH$$

где $Ac = CH_3C(O)$;

 $\hfill \square$ получение полиамидного волокна (капрона) (низкомолекулярный продукт реакции — вода ${\rm H_2O})$:

$$\begin{array}{c} n + N + CH_2 \xrightarrow{}_5 C \xrightarrow{O} \xrightarrow{-(n-1)H_2O} \xrightarrow{\prod} \xrightarrow{H} CH_2 \xrightarrow{N}_5 C \xrightarrow{\prod}_n. \end{array}$$

Пластмассы

Пластмассы — ВМС, способные под действием высоких температуры и давлении принимать любые формы и сохранять их после охлаждения.

□ Термопластичные пластмассы — материалы, способные выдерживать многократный цикл нагревание-охлаждение. Склонны к набуханию и растворению во многих органических

растворителях:
$$\begin{pmatrix} H_2 \\ C \end{pmatrix}$$
 полиэтелен, $\begin{pmatrix} C \\ L \\ H_2 \end{pmatrix}$ поливинолиропилен, $\begin{pmatrix} C \\ H_2 \end{pmatrix}$ тефлон.

□ Термореактивные пластмассы — материалы, не склонные к переплавке и разлагающиеся при нагревании без предварительного размягчения. Не растворяются в органических растворителях: фенолформальдегидная смола

$$\begin{bmatrix} \text{OH} & \text{H}_2 \\ \text{C} \end{bmatrix}_n$$

Каучуки

Эластомеры (каучуки) — ВМС, обладающие высокоэластичными свойствами (склонны восстанавливать свою первоначальную форму после снятия внешней нагрузки).

□ Природный каучук: полимер цис-изопрена, получают из млечного сока дерева гевея:

$$CH_2$$
 H_2C H_3C H

цис-форма□ Синтетические каучуки:

 бутадиеновый каучук (цис- и транс-формы) получают в результате полимеризации бутадиена-1,3:

$$CH_2$$
 H_2C
 C
 H
 H

• хлоропреновый каучук получают в результате полимеризации 2-хлорбутадиена-1,3:

• изопреновый каучук, аналог натурального каучука:

$$CH_2$$
 H_2C
 $C=C$
 H_3C H

• бутадиенстирольный каучук, получают в результате сополимеризации стирола и бутадиена-1,3:

$$\left\langle \begin{matrix} H & H_2 & C_{6}H_5 \\ C & C & C & H \\ H_2 & H & H_2 \end{matrix} \right\rangle_{n_1}$$

В присутствии молекулярной серы S при нагревании каучуки *вулканизируются* (макромолекулы каучука сшиваются между собой с помощью сульфидных и полисульфидных мостиков), образуя *резину* и *эбонит* (содержание серы в них превышает 50 %).

Волокна

Волокна — ВМС, характеризующиеся высокой упорядоченностью макромолекул, что позволяет использовать их для изготовления нитей.

- □ Природные волокна по происхождению делятся на три группы:
 - животного происхождения (шелк, шерсть);
 - растительного происхождения (лен, хлопок);
 - минерального происхождения (асбест).
- □ Искусственные волокна:
 - ацетатное волокно, получают в результате обработки

целлюлозы уксусным ангидридом:
$$\begin{bmatrix} \mathrm{C_6H_7O_2} \overset{\mathrm{OAc}}{\underset{\mathrm{OAc}}{\longleftarrow}} \mathrm{OAc} \\ \mathrm{OAc} \end{bmatrix}_n;$$

- вискозное волокно $(C_6H_{10}O_5)_n$ получают из древесной целлюлозы.
- □ Синтетические волокна:
 - полиамидное волокно (капрон): $\frac{H}{N} \leftarrow CH_2 \xrightarrow{0}_5 C \xrightarrow{1}_n$

(получают из капролактама
$$\stackrel{O}{ \ \ \ \ \ }$$
 $\stackrel{H}{ \ \ \ \ \ \ }$);

• полиэфирное волокно (лавсан):

Применение

Пластмассы: различные области промышленности, дешевые заменители дерева и металлов. Каучуки: изготовление автомобильных шин, строительных материалов, обуви. Волокна: текстильная промышленность (изготовление канатов, тканей).

Приложение

Элементы периодической системы

Z *	Элемент	Символ	A**
1	Водород	Н	1,01
2	Гелий	He	4,00
3	Литий	Li	6,94
4	Берилий	Be	9,01
5	Бор	В	10,8
6	Углерод	С	12,00
7	Азот	N	14,0
8	Кислород	0	16,0
9	Фтор	F	19,0
10	Неон	Ne	20,2
11	Натрий	Na	23,0
12	Магний	Mg	24,4
13	Алюминий	Al	27,0
14	Кремний	Si	28,1
15	Фосфор	P	31,0
16	Сера	S	32,1
17	Хлор	Cl	35,5
18	Аргон	Ar	40,0
19	Калий	K	39,1
20	Кальций	Ca	40,1
21	Скандий	Sc	45,0
22	Титан	Ti	47,9
23	Ванадий	V	51,0
24	Хром	Cr	52,0
25	Марганец	Mn	54,9
26	Железо	Fe	55,9

 \rightarrow

Продолжение таблицы

Z *	Элемент	Символ	A**
27	Кобальт	Со	58,9
28	Никель	Ni	58,7
29	Медь	Cu	63,5
30	Цинк	Zn	65,4
31	Галлий	Ga	69,7
32	Германий	Ge	72,6
33	Мышьяк	As	74,9
34	Селен	Se	79,0
35	Бром	Br	79,9
36	Криптон	Kr	83,8
37	Рубидий	Rb	85,5
38	Стронций	Sr	87,6
39	Иттрий	Y	88,9
40	Цирконий	Zr	91,2
41	Ниобий	Nb	92,9
42	Молибден	Mo	96,0
43	Технеций	Tc	99
44	Рутений	Ru	101
45	Родий	Rh	103
46	Палладий	Pd	106
47	Серебро	Ag	108
48	Кадмий	Cd	112
49	Индий	In	115
50	Олово	Sn	119
51	Сурьма	Sb	122
52	Теллур	Te	128
53	Йод	J	127
54	Ксенон	Xe	131

Продолжение таблицы

Z *	Элемент	Символ	A**
55	Цезий	Cs	133
56	Барий	Ba	137
57	Лантан	La	139
58	Церий	Се	140
59	Празеодим	Pr	141
60	Неодим	Nd	144
61	Прометий	Pm	145
62	Самарий	Sm	150
63	Европий	Eu	152
64	Гадолиний	Gd	157
65	Тербий	Tb	159
66	Диспрозий	Dy	163
67	Гольмий	Но	165
68	Эрбий	Er	167
69	Тулий	Tu	169
70	Иттербий	Yb	173
71	Лютеций	Lu	175
72	Гафний	Hf	178
73	Тантал	Ta	181
74	Вольфрам	W	184
75	Рений	Re	186
76	Осмий	Os	190
77	Иридий	Ir	192
78	Платина	Pl	195
79	Золото	Au	197
80	Ртуть	Hg	201
81	Таллий	Tl	204
82	Свинец	Pb	207

Приложение

Окончание таблицы

Z *	Элемент	Символ	A**
83	Висмут	Bi	209
84	Полоний	Po	210
85	Астат	At	210
86	Радон	Rn	222
87	Франций	Fr	223
88	Радий	Ra	226
89	Актиний	Ac	227
90	Торий	Th	232
91	Протактиний	Pa	231
92	Уран	U	238
93	Нептуний	Np	237
94	Плутоний	Pu	244
95	Амереций	Am	243
96	Кюрий	Cm	247
97	Берклий	Bk	249
98	Калифорний	Cf	249
99	Эйнштейний	Es	254
100	Фермий	Fm	262
101	Менделевий	Md	259
102	Нобелий	No	260

Примечание. Z^* — порядковый номер элемента; A^{**} — относительная атомная масса химического элемента (округленные значения).

Этот справочник станет незаменимым помощником старшим школьникам, студентам младших курсов и вузов при подготовке к самостоятельным и контрольным работам, тестам, экзаменам, ЕГЭ. Быстро освежить в памяти полученные знания, систематизировать материал, вспомнить самые важные формулы и уравнения реакций такие задачи призван решить сборник.

В справочник включены все разделы химии, изучаемые в старшей школе и вузах: общая, неорганическая и органическая химия.

Четко, максимально структурированно и полно приведены физические и химические свойства элементов и их соединений, способы получения и применения, приведены характеристики классов неорганических и органических соединений, при необходимости уравнения реакции поясняются словами и примерами.

