А. П. Гаршин

 Senneooks
Общая и неорганическая ХИМИЯ

в схемах, рисунках, таблицах, химических реакциях

ДОПУЩЕНО

 УЧЕБНО-МЕТОДИЧЕСКИМ ОБЪЕДИНЕНИЕМ
А. П. Гаршин

Общая и неорганическая ХИМИЯ

 в схемах, рисунках, таблицах, химических реакцияхДопущено УМО по направлению педагогического образования в качестве учебного пособия для студентов вузов, обучающихся по направлению 050100 «Естественнонаучное образование»

ББK

「21

Гаршин А. П.

Г21 Общая и неорганическая химия в схемах, рисунках, таблицах, химических реакциях: Учебное пособие. - СПб.: Питер, 2013. 288 с.: ил.

ISBN 978-5-496-00043-7

В учебном пособии в виде определений, рисунков, схем, таблиц, формул и химических реакций излагаются основные положения общей и неорганической химии.
Пособие предназначено для студентов нехимических специальностей вузов. Может быть использовано учащимися средних специальных учебных заведений химического и медико-биологического профилей, преподавателями средних школ, абитуриентами, иностранными студентами, обучающимися в российских технических вузах и на естественнонаучных факультетах университетов, а также в системе предвузовской подготовки зарубежных студентов.
Допущено УМО по направлению педагогического образования в качестве учебного пособия для студентов ВУЗ, обучающихся по направлению 050100 Естественнонаучное образование.

5БK 24я7
УДК 54(075)

Все права защищены. Никакая часть данной книги не может быть воспроизведөна в какой бы то ни было форме без письменного разрешения владельцеа авторских прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издатөльством как надежныө. Төм не менөе, имөя в виду возможные чөловеческие или технические ошибки, издательство не может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные с испопьзованием книги.

> Широко распростирает химия руки свои в дела человеческие. Куда ни посмотрим, куда ни оглянемся, - всюду бросаются перед очами нашими успехи ее приложения.
М. В. ЛОМОНОСОВ, 1749 а.

OT ABTOPA

В пособии системно и в доступной форме в виде рисунков, схем, таблиц, формул и уравнений химических реакций изложены сведения по курсу общей и неорганической химии. Именно благодаря такой форме изложения, наиболее удобной, по мнению автора, для систематизации полученных знаний и закрепления изученного материала, настоящее пособие включает большой объем теоретического и справочного материала, которым успешно овладевают учащиеся.

В пособии представлены разделы: основные понятия в химии, атомно-молекулярное учение и основные законы химии, классы неорганических соединений, периодический закон и периодическая система Д. И. Менделеева, строение атома и химическая связь, химические реакции и закономерности их протекания, растворы и теория электролитической диссоциации, окислительно-восстановительные реакции, электролиз, общие свойства металлов, металлы главных и побочных подгрупп, общие свойства неметаллов и неметаллы VIII-IV групп периодической системы Д. И. Менделеева.

В пособие включен также раздел «Химия и экологические проблемы современности». Это вызвано тем, что в настоящее время в мире особенно остро встала проблема защиты окружающей среды от химического и других видов загрязнений. И учащийся, изучающий химию, должен уже на

этом этапе обучения не только глубоко осознать, как влияет деятельность человека на состолние окружающей его среды, но и в своей деятельности в качестве будущего специалиста инженерных, медико-биологических и других специальностей попытаться ограничить отрицательное воздействие человека на природу.

Пособие может быть рекомендовано для широкого круга читателей: учащихся средних школ с углубленным изучением химии и биологии, абитуриентов, студентов средних специальных учебных заведений химического и медикобиологического профилей, а также студентов нехимических вузов и естественных факультетов университетов.

Особый интерес оно представляет для иностранных студентов, обучающихся в российских вузах и на подготовительных факультетах.

Материал настоящего пособия был успешно использован автором при обучении иностранных студентов инженерного и медико-биологического профиля на этапе предвузовской подготовки в Институте международных образовательных программ (Санкт-Петербургский государственный политехнический университет).

Автор будет весьма признателен всем, кто в той или иной форме своими критическими замечаниями и советами поможет внести соответствующие коррективы в последующие издания настоящего пособия.

1. OCHOBHBIE IOHYTHS IK 3AKOHBI XHMEK

1.1. IPEZMET XUNDH:

Химия - наука, изучающая состав, строение, свойства и превращение веществ и способы управления этим превращением.

Самая важная задача химии - получение веществ и материалов с определенными, наперед заданными свойствами.

1.2. BEMECTBO M EFO CBOй

Вещество - это форма материи, состоящая из частиц, обладающих массой покоя. Каждое вещество имеет определенный состав. Оно состоит из молекул, атомов или ионов.

Молекула - это наименьшая частица вещества, которая сохраняет химические свойства данного вещества.

Атом - наименьшая химически неделимая частица.
Ион - атом или группа атомов, которые имеют электрический заряд.

Все вещества характеризуются определенными свойствами.

Свойство - это качественная и количественная характеристики вещества, физического тела или явления. Вот только некоторые свойства, присущие веществам:

1.3. XMMMYECXIİ ЭЛEMEHT

Химический элемент - это одинаковый вид атомов, характеризующийся определенным зарядом ядра и присущим только ему строением электронных оболочек.

В настоящее время известно 110 химических элементов: 89 существует в природе, остальные получены искусственно. Каждый химический элемент имеет символ и название. Символ элемента обозначаетсяя одной или двумя буквами его латинского названия. В табл. 1 даны символы и названия некоторых элементов.

таблица 1
Символы и названия некоторых элементов

Символ элемента	Как читать символ	Латинское название'элемента	Русское название элемента
H	Am	Hydrogenium	Водоро́д
0	0	Oxygenium	Кислоро́д
S	Эс	Sulfur	Cépa
C	Цэ	Carboneum	Углеро́д
Si	Сили́циум	Silicium	Кре́мний
Cu	Ку́прум	Cuprum	Медь
Fe	Фе́ррум	Ferrum	Желе́зо
Ag	Арге́нтум	Argentum	Серебро́

В 1869 году русский ученый Д. И. Менделеев сформулировал периодический закон и создал периодическую систему химических элементов, в которой каждый элемент занимает строго определенное место, имеет свой порядковый номер, символ, название, атомную массу, характеризуется номером периода и номером группы. Например, фосфор имеет порядковый номер 15, находится в третьем периоде, в пятой группе (главной подгруппе) периодической системы Д. И. Менделеева:

Элементы делят на две группы: металлы ($>80 \%$) и неметаллы (табл. 2 и 3).

таблииа 2
Символы и вазвания некоторых неметаллов

	Как читать симвал	Русское название элемента		Как читать симвал	Русское назвс ние элемента
H	Am	Водоро́д	Br	Бром	Бром
0	0	Кислоро́д	I	Иод	Иод
C	Цэ	Углеро́д	Se	Селен	Селен
N	Эн	Азót	B	Bop	Bop
P	Пэ	Фóc¢op	As	Арсеникум	Мышиякк
F	Фтор	$\Phi_{\text {тор }}$	Sb	Стибиум	Сурьма́
Cl	Хлор	Хлор	Si	Силициум	Кре́мний

таблица 3
Символы н пазвания некоторых металлов

	$\left\lvert\, \begin{gathered} \text { Как } \\ \text { читать символ } \end{gathered}\right.$	Русское название элемента		Как читать симвал	Русское название элемента
Li	Ли́тий	Ли́тий	Cr	Хром	Хром
Na	На́трий	На́трий	Ni	Ни́кель	Ни́кель
K	Ка́лий	Ка́лий	Co	Ко́бальт	Ко́бальт
Rb	Руби́дий	Рубиідий	Mn	Ма́рганец	Ма́рганец
Cs	Це́зий	Це́зий	Fe	Фе́ррум	Желе́зо
Ca	Ка́лъций	Ка́льций	Cu	Ку́прум	Медь
Sr	Стро́нций	Стро́нций	Ag	Арге́нтум	Серебро́
Ba	Ва́рий	Ба́рий	Hg	Гидра́ргирум	Ртуть
Mg	Ма́гний	Ма́rний	Au	А́урум	Зо́лото
Zn	Цинк	Цинк	Pb	Плю́мбум	Свине́ц
Al	Алюми́ний	Алюми́ний	Sn	Ста́ннум	о́лово

1.4. XHMKपЕСКАЯ ФОРМУЛА BЕЩЕСТВА

Химическая формула - это изображение состава вещества при помощи символов элементов и числовых индексов. Например,

Химическая формула показывает, атомы каких элементов и в каких относительных количествах составляют данное вещество.

Примеры чтения формул:

$\mathrm{Al}_{2} \mathrm{O}_{3}$	- алюминий-два-о-три,
$\mathrm{Cu}(\mathrm{OH})_{2}$	-купрум-о-аш-дважды,
$\mathrm{H}_{3} \mathrm{PO}_{4}$	-аш-три-пэ-о-четыре,
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	-феррум-два-эс-о-четыре-трижды,
PbCO_{3}	-плюмбум-цэ-о-три,
$\mathrm{Co}(\mathrm{OH})_{3}$	-кобальт-о-аш-трижды,
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$	-гидраргирум-эн-о-три-дважды.
NiCl_{2}	-никель-хлор-два
$\mathrm{Al}_{\left(\mathrm{NO}_{3}\right)_{3}}$	-алюминий-эн-о-три-трижды
$\mathrm{Na}_{3} \mathrm{AsO}_{4}$	-натрий-три-арсеникум-о-четыре
$\mathrm{CaH}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	-кальций-аш-два-пэ-два-о-семь
$\left.\mathrm{Ca}_{2} \mathrm{ClO}_{4}\right)_{2}$	-кальций-хлор-о-четыре-дважды
$\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	-цинк-три-пэ-о-четыре-дважды

1.5. IIPOCTHE И CIOXHBE BEMECTRA

Наглядное представление дает следующая схема:

Сложные вещества называются также химическими соединениями.

Существуют соединения постоянного состава (дальтониды) и переменного состава (бертоллиды).

Состав дальтонидов выражается фрмулами с цельночисленными стехиометрическими индексами ($\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$, CH_{4} и др.), а состав бертоллидов изменяется ($\mathrm{TiO}_{0,7} \div \mathrm{TiO}_{1,3}$; $\mathrm{ZrN}_{0,69} ; \mathrm{ZrN}_{0,89}$ и др.).

1.6. АЛЛ0TP0IDЯ

Аллотропия - это способность химических элементов существовать в виде нескольких простых веществ.

Как видно из приведенной схемы, у кислорода два аллотропических видоизменения (модификации) - кислород $\left(\mathrm{O}_{2}\right)$ и озон $\left(\mathrm{O}_{3}\right)$, у углерода - алмаз, графит, карбин и фуллерены: $\mathrm{C}_{60}, \mathrm{C}_{70}$, у фосфора три модификации - белый, красный и черный фосфор.

1.7. CTEIEHB OXHCЛEHMA OЛLENETA

Степень окисления (ст. ок.) - условный заряд атома в соединении.

Степень окисления может иметь положительное, отрицательное или нулевое значение.

Степень окисления атомов в простых веществах равня нулю:

Степень окисления атома в сложном веществе может быть постоянной и переменной (табл. 4 и 5).

таблица 4
Постовнная степень окисления

Степень окисления	Металrbi (+)	Степень окисления	Неметалльı (+) $\boldsymbol{u}(-)$
+1	$\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Ag}$		
+2	$\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Zn}$	-1	F
+3	Al	-1, $-2,+2$	O^{*}

* Наиболее характерная степень окисления -2 .

таблица 5
Переменная степень окисления

Степень окисления	Металльь (+)	Степень окисления	Неметалль (+) $u(-)$
$\begin{aligned} & +1,+2 \\ & +2,+3 \end{aligned}$	$\begin{aligned} & \mathrm{Cu}, \mathrm{Hg} \\ & \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni} \end{aligned}$	$\begin{aligned} & -1,+1 \\ & -4,+2,+4 \\ & -3,+3,+5 \end{aligned}$	H C, Si $\mathrm{N}, \mathrm{P}, \mathrm{As}$
+2,+3, +6	Cr, Mo	$\begin{aligned} & -1,+1,+3,+5,+7 \\ & -2,+4,+6 \end{aligned}$	$\begin{aligned} & \mathrm{Cl}, \mathrm{Br} ; \mathrm{I} \\ & \mathrm{~S}, \mathrm{Se}, \mathrm{Te} \end{aligned}$
Атомы металлов в соединениях имеют положительную степень окисления		Атомы неметаллов в соединениях могут иметь положительную и отрицательную степени окисления	

1.8. ОІРЕДЕЛЕННЕ СТЕПЕНИ ОКИСЛЕНИЯ АТОМА

Молекула вещества - электронейтральная частица. Это означает, что алгебраическая сумма степеней окисления всех атомов, входящих в состав соединения, равна нулю. Исходя из этого правила, степень окисления атома в соединении можно найти по формуле вещества.

Например, обозначив степень окисления серы в соеди-
 уравнения для суммы степеней окисления: $2 \cdot(+1)+x+$ $+3 \cdot(-2)=0\left(\right.$ для $\mathrm{H}_{2} \mathrm{SO}_{3}$) и $2 \cdot(+1)+y+4 \cdot(-2)=0$ (для $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Решив эти уравнения, получим $x=+4$ и $y=+6$ - это означает, что степень окисления атома S равна +4 в $\mathrm{H}_{2} \mathrm{SO}_{3}$, и +6 в $\mathrm{H}_{2} \mathrm{SO}_{4}$.

1.9. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕННЕ

Основные положения учения об атомах и молекулах разработал русский ученый М. В. Ломоносов.

1. Все вещества состоят из молекул, атомов или ионов.
2. Атомы и молекулы находятся в непрерывном движении, их скорость возрастает с увеличением температуры.
3. Атомы и молекулы имеют массу и размеры.
4. Между молекулами в веществе существуют силы взаимного притяжения и отталкивания.
5. Простые вещества состоят из одинаковых атомов, а сложные вещества - из разных атомов.

АТОМНАЯ ЕДИНИЦА МАССЫ (а. е. м.) равна $1 / 12$ части массы атома углерода

1 a. е. м. $=1 / 12 m(\mathrm{C})=\frac{1,99268 \cdot 10^{-26} \mathrm{\kappa г}}{12} \cong 1,6606 \cdot 10^{-27}{ }_{\mathrm{\kappa г}}$,
где $m(\mathrm{C})=1,99268 \cdot 10^{-26}$ кг - абсолютная масса атома углерода ${ }_{6}^{12} \mathrm{C}$.

1.10. OTHOGITEJBFAR ATOMHAK MACCA

Пример: $A_{r}(\mathrm{Fe})=56$. Это значит, что масса атома железа в 56 раз больше ${ }^{1 / 12}$ части массы атома углерода ${ }^{12} \mathrm{C}$.

$$
A_{r}(Э)=\frac{m_{\mathrm{a}}(Э)}{1 / 12 m_{\mathrm{a}}(\mathrm{C})}
$$

$m_{\mathrm{a}}\left(\right.$ Э) - масса атома данного элемента; $m_{\mathrm{a}}(\mathrm{C})$ - масса атома углерода.

По этой формуле легко определить относительную атомную массу любого элемента. Например, если абсолютная масса кислорода равна $\sim 2,66 \cdot 10^{-26}$ кг, то его

$$
A_{r}(O)=\frac{m_{\mathrm{a}}(\mathrm{O})}{1 / 12 m_{\mathrm{a}}(\mathrm{C})}=\frac{2,66 \cdot 10^{-26} \mathrm{~K} \mathrm{\Gamma}}{1 / 12 \cdot 1,993 \cdot 10^{-26}{ }_{\mathrm{K} \Gamma}} \cong 16
$$

Для фтора

$$
A_{r}(F)=\frac{3,15481 \cdot 10^{-26} \kappa \Gamma}{1,66057 \cdot 10^{-27} \kappa \Gamma} \cong 19 .
$$

1.11. ОТНОСКТЕЛЬНАЯ МОЛЕКУЛЯРНАЯ МАССА

Примеры:

$$
M_{r}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{1 \text { a.e. } \mathrm{M} .}=\frac{29,9738 \cdot 10^{-27} \mathrm{~K} \mathrm{\Gamma}}{1,6606 \cdot 10^{-27} \mathrm{~K} \mathrm{\Gamma}} \cong 18 .
$$

Это значит, что масса молекулы $\mathrm{H}_{2} \mathrm{O}$ в 18 раз больше $1 / 12$ части массы атома углерода (или одной атомной единицы массы).

$$
M_{r}=\sum \mathrm{A}_{r}(\ni)
$$

$$
\begin{gathered}
M_{r}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=3 A_{r}(\mathrm{H})+A_{r}(\mathrm{P})+4 A_{r}(\mathrm{O})= \\
=3 \cdot 1+31+4 \cdot 16=3+31+64=98 .
\end{gathered}
$$

$$
M_{r}(\mathrm{X})=\frac{m(\mathrm{X})}{1 / 2 m_{\mathrm{a}}(\mathrm{C})}
$$

$m(\mathrm{X})$ - масса молекулы данного вещества;
$m_{\mathrm{a}}(\mathrm{C})$ - масса атома углерода;
$M_{r}(\mathrm{X})$ - относительная молекулярная масса данного вещества.

1.12. MACCOBAЯ ДОЛЯ ЗДЕМЕНTA

$$
\omega(Э)=\frac{n \cdot A_{r}(Э)}{M_{r}}
$$

n - число атомов; $A_{r}(Э)$ - относительная атомная масса элемента; M_{r} - относительная молекулярная масса вещества.

Пример 1. Какова массовая доля углерода в углекислом газе CO_{2} ?

Решение :

$$
\omega(\mathrm{C})=\frac{n \cdot \mathrm{~A}_{r}(\mathrm{C})}{M_{r}\left(\mathrm{CO}_{2}\right)}=\frac{1 \cdot 12}{44} \cong 0,273 \text { или } \approx 27,3 \%
$$

Пример 2. Какова массовая доля водорода в аммиаке NH_{3} ?

Решение :

$$
\omega(\mathrm{N})=\frac{n \cdot A_{r}(\mathrm{H})}{M_{r}\left(\mathrm{NH}_{3}\right)}=\frac{3 \cdot 1}{17} \cong 0,17647 \approx 17,65 \%
$$

1.13. вЫВОД хМмичесХоИ фОрмулЫ ВЕЩеСТВА ПО M3BECTHOK MACCOBOL ДOJE ЭЛEMEHTOB

Решение задачи в общем виде (алгоритм решения)

1. Записать формулу вещества с индексами x, y, z $A_{x} B_{y} C_{z}$.
2. Рассчитать соотношение $x: y: z$ через массовые доли элементов:

$$
\begin{aligned}
& \omega(\mathrm{A})=\frac{x \cdot \mathrm{~A}_{r}(\mathrm{~A})}{M_{r}\left(\mathrm{~A}_{x} \mathrm{~B}_{y} \mathrm{C}_{z}\right)} \Rightarrow x=\frac{\omega(\mathrm{A}) M_{r}}{\mathrm{~A}_{r}(\mathrm{~A})} \\
& \omega(\mathrm{B})=\frac{y \cdot \mathrm{~A}_{r}(\mathrm{~B})}{M_{r}\left(\mathrm{~A}_{x} \mathrm{E}_{y} \mathrm{C}_{z}\right)} \Rightarrow y=\frac{\omega(\mathrm{B}) M_{r}}{\mathrm{~A}_{r}(\mathrm{~B})} \\
& \omega(\mathrm{C})=\frac{z \cdot \mathrm{~A}_{r}(\mathrm{C})}{M_{r}\left(\mathrm{~A}_{x} \mathrm{~B}_{y} \mathrm{C}_{z}\right)} \Rightarrow z=\frac{\omega(\mathrm{C}) M_{r}}{\mathrm{~A}_{r}(\mathrm{C})}
\end{aligned}
$$

3. Полученные цифры разделить или умножить на одно и то же число для получения целых чисел x, y, z.
4. Записать формулу.

Задача (пример) 1. Вывести химическую формулу вещества, в котором содержится $\mathbf{4 0} \% \mathrm{Ca}, \mathbf{1 2 \%}$ С и $\mathbf{4 8 \%}$ О.

Решение :

1. $\mathrm{Ca}_{x} \mathrm{C}_{y} \mathrm{O}_{z}$,
2. $x: y: z=\frac{\omega(\mathrm{Ca})}{\mathrm{A}_{r}(\mathrm{Ca})}: \frac{\omega(\mathrm{C})}{\mathrm{A}_{r}(\mathrm{C})}=\frac{\omega(\mathrm{O})}{\mathrm{A}_{r}(\mathrm{O})}=\frac{40}{40}: \frac{12}{12}: \frac{48}{16}=1: 1: 3$.
3. Делим все полученные числа на самое маленькое число (1); $x: y: z=1: 1: 3$.
4. Записываем формулу: CaCO_{3} - карбонат кальция.

Задача 2. Вывести химическую формулу вещества, в котором содержится $39 \% \mathrm{~K}, \mathbf{1 \% ~ H , ~} 12 \% \mathrm{C}, 48 \%$ О.

Решение:

1. $\mathrm{K}_{x} \mathrm{H}_{y} \mathrm{C}_{z} \mathrm{O}_{\mathrm{g}}$
2. $x: y: z: g=\frac{\omega(\mathrm{K})}{\mathrm{A}_{r}(\mathrm{~K})}: \frac{\omega(\mathrm{H})}{\mathrm{A}_{r}(\mathrm{H})}=\frac{\omega(\mathrm{C})}{\mathrm{A}_{r}(\mathrm{C})}=\frac{\omega(\mathrm{O})}{\mathrm{A}_{r}(\mathrm{O})}=\frac{39}{39}: \frac{1}{1}: \frac{12}{12}: \frac{48}{16}=1: 1: 1: 3$.
3. Делим все полученные числа на самое маленькое число (1); $x: y: z: \mathbf{g}=1: 1: 1: 3$.
4. Записываем формулу вещества: KHCO_{3}.

Моль - это такое количество вещества, которое содержит столько структурных единиц (молекул, атомов, ионов), сколько содержится атомов изотопа в углероде ${ }^{12} \mathrm{C}$ массой 0,012 кг.

Так как абсолютная ма́сса 1 атома углерода ${ }^{12} \mathrm{C}$ равна $1,993 \cdot 10^{-26}$ кг, то число атомов, содержащихся в углероде, массой 0,012 кг составит:
$\frac{\text { масса углерода }}{\text { масса } 1 \text { атома углерода }}=$
$=\frac{0,012 \text { кг }}{1,993 \cdot 10^{-26} \text { кг }} \cong 6,02 \cdot 10^{23}$ атомов.

Значит, 0,012 кг углерода содержит $6,02 \cdot 10^{23}$ атомов. Отсюда 1 моль - это такое количество вещества, которое содержит $6,02 \cdot 10^{23}$ структурных единиц (молекул, атомов, ионов). Это вещество может находиться в любом агрегатном состоянии - твердом, жидком или газообразном. Например, 1 моль $\mathrm{H}_{2} \mathrm{O}$ [водяные пары, вода жидкая, вода в виде льда (льдообразное состояние)] содержит 6,02 $\cdot 10^{23}$ молекул $\mathrm{H}_{2} \mathrm{O}, 2 \cdot 6,02 \cdot 10^{23}$ атомов H и $6,02 \cdot 10^{23}$ атомов О. Таким образом, отношение 0,012 кг массы углерода ${ }^{12} \mathrm{C}$ к массе 1 атома углерода, равное $6,02 \cdot 10^{23}$, определяет число структурных единиц. содержащихся в 1 моле вещества.

1.15. ФiСЛО АВогАДРо

Постоянная Авогадро N_{A} - это число структурных единиц в 1 моле вещества.

$$
N_{\mathrm{A}}=6,02 \cdot 10^{23} \text { моль }^{-1}
$$

Постоянная Авогадро - одна из важнейших фундаментальных физических постоянных.

Например, 1 моль оксида углерода (IV) содержит $6,02 \cdot 10^{23}$ молекул CO_{2}, соль KI количеством 1 моль содержит $6,02 \cdot 10^{23}$ ионов K^{+}и $6,02 \cdot 10^{23}$ ионов I^{-}.

$$
n=\frac{N}{N_{A}} \Rightarrow N_{A}=\frac{N}{n} \Rightarrow N=n \cdot N_{A}
$$

N - число частиц; n - количество вещества, моль.
Пример. Дано $18,06 \cdot 10^{24}$ молекул O_{2}. Определить количество вещества O_{2}.

Решение:

$$
n=\frac{N}{N_{A}}=\frac{18,06 \cdot 10^{24}}{6,02 \cdot 10^{23}}=30(\text { моль })
$$

1.16. МОЛЯРНАЯ MACCA

m - масса вещества, кг (г); n - количество вещества, моль.
Молярная масса вещества равна отношению массы щещества к его количеству.

Молярная масса вещества M в г/моль численно равна относительной молекулярной массе данного вещества: Например:

$$
\begin{aligned}
& A_{r}(\mathrm{Ca})=40 \\
& M_{r}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 ; \\
& \left.M_{r} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right]=242 ;
\end{aligned}
$$

$$
\begin{aligned}
& M(\mathrm{Ca})=40 \text { г/моль; } \\
& M\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \text { г/моль; } \\
& M\left[\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right]=242 \text { г/моль. }
\end{aligned}
$$

Џример. При взаимодействии перманганата калия с соляной кислотой было получено $6,02 \cdot 10^{25}$ молекул хлора Cl_{2}. Определить количество и массу полученного вещества Cl_{2}.

Решение:

$$
\begin{gathered}
n=\frac{N}{N_{A}}=\frac{6,02 \cdot 10^{25}}{6,02 \cdot 10^{23} \text { моль }^{-1}}=100(\text { моль }), \\
n=M \cdot n=35,5 \cdot 2 \cdot \frac{6,02 \cdot 10^{25}}{6,02 \cdot 10^{23}}=7100 \text { г }=7,1(\text { кг }) .
\end{gathered}
$$

ЗАKOH АВОГАДРО

V - объем газа, м ${ }^{3}$ (л); n - количество вещества, моль. Молярный объем газа V_{M} равен отношению объема газа V к количеству вещества n в этом объеме.

Закон Авогадро формулируется так: в равных объемах разных газов при одинаковых внешних условиях (температура t°, давление P) содержится одинаковое число молекул.

Из закона Авогадро следует, что «равные количества любых газов при одинаковых внешних условиях (t°, P) занимают равные объемы».

Нормальные условия (н.у.): $t^{\circ}=273$ К ($0^{\circ} \mathrm{C}$) и $P=$ $=101325$ Па (1 атм).

При н. у. $V_{\text {м }}=22,4 \pi /$ моль

$$
n=\frac{V}{V_{M}}=\frac{m}{M}=\frac{N}{N_{A}}
$$

1.18. ОТНОСЛТЕЛЬНАЯ ПЛОТНОСТЬ ГАЗОВ

$$
\begin{aligned}
& D_{\mathrm{H}_{2}}=\frac{M(\mathrm{X})}{M\left(\mathrm{H}_{2}\right)}=\frac{M(\mathrm{X})}{2} \Rightarrow M(\mathrm{X})=D_{\mathrm{H}_{2}} \cdot M\left(\mathrm{H}_{2}\right)=2 D_{\mathrm{H}_{2}} ; \\
& D_{\text {воэя. }}=\frac{M(\mathrm{X})}{M(\text { возд. })} \Rightarrow M(\mathrm{X})=D_{\text {ввза. }} \cdot M(\text { возд. })=29 D_{\text {возя. }}
\end{aligned}
$$

$D_{\mathbf{H}_{2}}$ - относительная плотность газа X по водороду; $D_{\text {возд. }}$ - относительная плотность газа X по воздуху; $M(\mathrm{X})$ - молярная масса газа $\mathrm{X} ; \mathbf{M}\left(\mathrm{H}_{2}\right)$ - молярная масса водорода; 29 - средняя молярная масса воздуха.

Пример 1. Вычислить молярную массу газа X, если его относительная плотность по воздуху равна 1,517 .

Решение:
$M(\mathrm{X})=29 D_{\text {вози }}$;
$M(\mathrm{X})=29$ г $/$ моль $\cdot 1,517=44$ г/моль.
Пример 2. Определить относительную молекулярную массу азота, если известно, что его плотность по водороду равна 13,89 .

Репение:
Находим молярную массу азота:
$M\left(\mathrm{~N}_{2}\right)=2 D_{\mathrm{H}_{2}}=2 \cdot 13,89=27,78 \cong 28$ (г/моль).
Значит, $M_{r}\left(\mathrm{~N}_{2}\right)=28$.

1.19. XHMKYECKOE YPABHEHHE. PEARLMI

Химическая реакция - это процесс превращения одних веществ в другие вещества.

Химическое уравнение - изображение (показ) химической реакции при помощи химических формул и математических знаков.

Химическое уравнение показывает, какие вещества и в каких количествах вступили в реакцию и получились в результате этой реакции.

Цифра 2 перед NaOH - стехиометрический коэффициент. Правила составления уравнения химической реакции приведены в таблице:

Правцла составления (алгоритм) уравнения химической реакции	Уравнение химической реакиии между железом и хлором
1. Составить схему взаимодействия: записать слева формулы веществ, вступивппх в реакцию, а справа - веществ, получившихся в результате реакции, соединив их знаком « \rightarrow "	1. $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$ Два простых вещества вступают в реакцию, и получается одно сложное вещество
2. Подобрать коэффициенты реагирующих веществ так, чтобы число атомов каждого элемента в левой и правой частях уравнения было одинаковым	2. а) уравнять число атомов хлора, поставив коэффициент 2 перед формулой хлорида железа (III) и коэфициент 3 перед формулой хлора; б) уравнять число атомов железа, поставив коэффициент 2 перед формулой железа: $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$
3. Проверить равенство числа атомов каждого элемента в левой и правой частях уравнения и поставить знак равенства («л))	$\begin{aligned} & \text { 3. } n(\mathrm{Cl})=2 \cdot 3=3 \cdot 2=6 \\ & n(\mathrm{Fe})=1 \cdot 2=2 \\ & 2 \mathrm{Fe}+3 \mathrm{Cl}_{2}=2 \mathrm{FeCl}_{3} \end{aligned}$

1.20. CTEXIOMETPHYECRHE 3AROHBI ETMLI

Формулировка закона	Aвтор u zod omкрытия	Примечания
Закон сохранения массы		
Масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате реакции	Русский ученый М. В. Ломоносов (1748 г.)	Например, $\begin{aligned} & \mathrm{H}_{2}+\mathrm{Cl}_{2}=2 \mathrm{HCl} \\ & 2 \text { г } 71 \text { r } 73 \text { r } \end{aligned}$
Закон постоянства состава		
Любое химически чистое вещество всегда имеет постоянный качественный и количественный состав независимо от способов его получения	Француз ский ученый Ж. Л. Пруст (1789 г.)	Например, малахит, добываемый в Сибири и в Испании, имеет одинаковый состав
Закон эквивалентов		
Массы реагирующих веществ (m_{A}, m_{B}) пропорциональны их эквивалентам ($\mathcal{A}_{A}, Э_{B}$): $m_{A} / m_{B}=Э_{A} / Э_{B}$	Немецкий химик И. Рихтер (1792-1794 гг.)	Определение эквивалента приведено на с. 153
Закон кратных отношений		
В соединениях, образованных из двух элементов, массовое количество одного элемента, приходящееся на одно и то же массовое количество другого элемента, соотносятся между собой как небольшие целые числа	Английский химик Дж. Дальтон (1803 г.)	Например, в СО и CO_{2} на одну массовую часть C приходятся разные массовые части 0 , относящнеся между собой как 1:2
Закон простых объемных отиошений		
При одинаковых давлении и темшературе объемы реагируюпих газов и газообразных продуктов реакции относятся между собой как небольшие целые числа	Французский ученый Ж. Л. ГейЛюссак (1808 г.)	Нацример, $\begin{aligned} & \mathrm{H}_{2}+\mathrm{Cl}_{2}=2 \mathrm{HCl} \\ & 1 \mathrm{~V}: 1 \mathrm{~V}: 2 \mathrm{~V} \end{aligned}$
Закон Авогадро		
В равньх объемах любнх газов цри одинаковых температуре и давлении содержится одинаковое число молекул	Итальянский физик A. Авогадро (1811 г.)	Подробно см. с. 19

Классификацию химических реакций можно проводить по разным признакам.

1. По числу и составу исходных веществ и продуктов реакции различают реакции соединения, замещения, разложения и обмена (см. схему).

Реакции замещения идут в соответствии с заместительным рядом металлов (или галогенов): металл (или галоген), столщий в ряду левее, может замещать в реакции металлы (или галогены), стоящие в ряду правее:

Заместительный ряд металлов
$\mathrm{Me}-\mathrm{IA}, \mathrm{Me}-\mathrm{ILA}>\mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Sn}, \mathrm{Pb},>\mathrm{H}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{Pt}, \mathrm{Au}$
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow, \mathrm{Zn}+\mathrm{FeSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Fe}, \mathrm{HoNi}+\mathrm{ZnSO}_{4} \rightarrow$
Заместительный ряд галогенов

$$
\frac{\mathrm{F}_{2} \gg \mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}}{2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}, \text { но } 2 \mathrm{KF}+\mathrm{Cl}_{2} \rightarrow}
$$

Химические реакции можно классифицировать и по другим признакам.

1. По выделению или поглощению энергии в ходе реакции:
$2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+220$ кДж (экзотермическая реакция); $\mathrm{C}+\mathrm{H}_{2} \mathrm{O}$ (газ) $\rightarrow \mathrm{CO}+\mathrm{H}_{2}-132$ кДж (эндотермическая реакция).
2. По типу реагента:

галогенирование: $\underset{\text { газ }}{\mathrm{CH}_{4}}+\mathrm{Cl}_{2} \xrightarrow{h v} \underset{\text { ллорметан }}{\mathrm{CH}_{3} \mathrm{Cl}}+\mathrm{HCl}$;
нитрование: $\mathrm{CH}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$;
ннтрометан
гидрирование: $2 \mathrm{Na}+\mathrm{H}_{2} \rightarrow 2 \mathrm{NaH}, \underset{\text { әтилев }}{\mathrm{C}_{2} \mathrm{H}_{4}}+\mathrm{H}_{2} \rightarrow \underset{\text { ттая }}{\mathrm{C}_{2} \mathrm{H}_{6}}$.
3. По типу частиц (молекулы, ионы, радикалы), участвующих в реакции:
$2 \mathrm{~K}_{3} \mathrm{PO}_{4}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow+3 \mathrm{~K}_{2} \mathrm{SO}_{4}$; ионные: $3 \mathrm{Cu}^{2+}+2 \mathrm{PO}^{3-}{ }_{4} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow$;
цепные, или радикальные: $\mathrm{Cl}_{2}+h \nu \rightarrow 2 \mathrm{Cl}^{*}, \mathrm{Cl}^{*}+\mathrm{H}_{2} \rightarrow \mathrm{HCl}+$ $+\mathrm{H}^{\cdot}, \mathrm{H}^{\cdot}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}+\mathrm{Cl}^{\cdot}$ и т. д.
4. По типу энергетического воздействия на вещество: термохимические:
$2 \mathrm{H}_{2}($ газ $)+\mathrm{O}_{2}$ (газ) $=2 \mathrm{H}_{2} \mathrm{O}$ (жидк. $)+571,6$ кДж;
электрохимические (электролиз):
$2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { әлектролиз }} \mathrm{H}_{2} \uparrow+\mathrm{Cl}_{2} \uparrow+2 \mathrm{NaOH}$;
фотохимические (фотосинтез):

$$
n \mathrm{CO}_{2}+m \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { свет }} \underset{\substack{\text { углеоод }}}{\mathrm{C}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{m}}+n \mathrm{O}_{2} .
$$

5. Классификация окислительно-восстановительных реакций приведена в разделе 9 .
1.22. PEITEHEE ЗAПAY IIO XMMLYECKHM YPABHEHMGM

Порядок (алгоритм) решения	Примеры	
1. Составить уравнение химической реакции	Определитъ, какой объем азота (н. у.) вступает в реакцию с водородом массой 60 г	
2. Одной чертой подчеркнуть формулы веществ, массы которых указаны в условии задачи, и двумя чертами - формулы веществ, массы которых требуется определить	$\begin{aligned} & \text { Решение: } \\ & \underset{\frac{60}{60}}{\frac{3 \mathrm{H}}{2}}+\frac{\mathrm{N}_{2}}{\underline{\mathrm{~N}_{2}}}=2 \mathrm{NH}_{3} \quad(1,2,3) \end{aligned}$	
3. Исходные данные записать над формулами соответствующих веществ	$\begin{align*} & n=3 \text { моль } \\ & M=2 \text { г/моль } \tag{4}\\ & m=6 \text { г } \end{align*}$	$\begin{aligned} & n=1 \text { моль } \\ & V_{M}=22,4 \text { л/ } \\ & \text { моль } \end{aligned}$
4. Количество вещества (n) определяется коэффициентами уравнения реакции;	$\begin{equation*} \frac{60}{6}=\frac{x}{22,4} \tag{5} \end{equation*}$	
молярная масса (M) численно равна относительной молекулярной массе (M_{r});	$x=\frac{60 \cdot 22,4}{6}=224(\pi)$	
массу вещества (m) определить по формуле $m=M \cdot n$; молярный объем газов при н. у.	Какую массу оксида бария нужно взять для получения гидроксида бария массой 17,1 г?	
$V_{M}=22,4 \text { л/моль; }$		
Объем газа $V=V_{M} \cdot n$ 5. Составить пропорцию	$\underset{153 \mathrm{r}}{\mathrm{BaO}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{171 \mathrm{r}}{\mathrm{Ba}(\mathrm{OH})_{2}}(1,2,3)$	
6. Решить пропорцию	$\begin{equation*} x=\frac{153 \cdot 17,1}{171}=15,3(\mathrm{r}) \mathrm{BaO} \tag{6} \end{equation*}$	
7. Записать ответ	Для получения 17,1 г гидроксида бария нужно взять 15,3 г BaO	

Приведенный порядок решения по химическим уравнениям широко используется в расчетах при решении задач.

Приведем несколько примеров.
Пример 1. Какой объем водорода (н. у.) образуется при взаимодействии 5,6 г железа с соляной кислотой?

Решение :

$$
\begin{aligned}
& \frac{5,6 r}{\frac{5 \mathrm{~F}}{56 \mathrm{r}}}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\frac{\mathrm{H}_{2}}{\frac{\mathrm{H}_{2}}{22,4,}} \uparrow \\
& \frac{5,6}{56}= \frac{x}{22,4}, \quad x=\frac{5,6 \cdot 22,4}{56}=22,24 \text { (л) } \mathrm{H}_{2} .
\end{aligned}
$$

Пример 2. Определить массу фосфата кальция $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, образовавшегося в результате реакции фосфата калия $\mathrm{K}_{3} \mathrm{PO}_{4}$ массой 42,4 г с нитратом кальция $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.

Решение :

$$
\begin{aligned}
& \frac{2 \mathrm{~K}_{3}^{42,4 \mathrm{PO}}}{424 \mathrm{r}}+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Ca}_{\frac{3}{}\left(\mathrm{PO}_{4}\right)_{2}}^{310 \mathrm{r}} \downarrow+6 \mathrm{KNO}_{3} \\
& \frac{42,4}{424}=\frac{x}{310}, \quad x=\frac{42,4 \cdot 310}{424}=31(\mathrm{r}) \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} .
\end{aligned}
$$

Пример 3. Определить массу осадка, который образуется в результате взаимодействия хлорида железа (III) с 0,9 моль гидроксида калия.

Решение :

$$
\begin{gathered}
\mathrm{FeCl}_{3}+\frac{3_{\mathrm{KOH}}^{3,9 \text { моль }}}{3 \text { моль }} \rightarrow 3 \mathrm{KCl}+\underset{\mathrm{Fe}(\mathrm{OH})_{3}}{\frac{x \mathrm{r}}{107 \mathrm{r}}} \downarrow \\
\frac{0,9}{3}=\frac{x}{107}, \quad x=\frac{0,9 \cdot 107}{3}=32,1 \mathrm{Fe}(\mathrm{OH})_{3} .
\end{gathered}
$$

Пример 4. Какой объем оксида углерода (IV) при н. у. надо взять для реакции с гидроксидом бария, чтобы получить карбонат бария массой 19,7 г?

Решение:

$$
\begin{gathered}
\frac{\mathrm{CO}_{2}}{\overline{\mathrm{CO}_{2} / 4}}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \underset{\frac{\mathrm{BaCO}_{3}}{197.7 \mathrm{r}} \downarrow+\mathrm{H}_{2} \mathrm{O}}{22,4}=\frac{x}{197}, x=\frac{19,7}{197}=2,24 \text { (л) } \mathrm{CO}_{2} .
\end{gathered}
$$

2. OCHOBHBE KJACCBI HEOPRAHYYECKIX COEДMHEHMİ

2.1. ОБЩАЯ клАССИфИКАЦИЯ HEOPTAHMYECKIX BEMECTB

2.2. 0xCTMЫ. OHPEДEЛEHDE M RJACCHゅHKAHY

Оксиды - это сложные вещества, в состав которых входят атомы кислорода в степени окисления, равной -2 , и другого элемента (Э) - металла или неметалла.

$Э_{2}^{+n} \mathrm{O}_{n}^{-2}$ - общая формула оксидов
n - степень окисления элемента
-2 - степень окисления кислорода

2.3. XIMMYECRHE CBOLICTBA охсидов

Основньие оксиды	Кислотные оксиды
$\begin{aligned} & \text { 1. Основной оксид* + вода } \rightarrow \\ & \rightarrow \text { щелочь } \\ & \mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}, \\ & \mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2} \end{aligned}$	1. Кислотный оксид + вода \rightarrow кислота $\begin{aligned} & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \\ & \mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}, \\ & \mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O} \text { か нет реакции } \\ & (\text { (исклюочение }) \end{aligned}$
$\begin{aligned} & \text { 2. Основной оксид }+ \text { кислота } \rightarrow \\ & \rightarrow \text { соль }+ \text { вода } \\ & \mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { 2. Кислотный оксид + щелочъ } \rightarrow \\ & \rightarrow \text { соль }+ \text { вода } \\ & \mathrm{SO}_{3}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$
3. Основной оксид + кислотный оксид \rightarrow соль $\begin{aligned} & \mathrm{MgO}+\mathrm{CO}_{2} \rightarrow \mathrm{MgCO}_{3}, \\ & 3 \mathrm{CaO}+\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \end{aligned}$	$\begin{aligned} & \text { 3. Кислотный оксид }+ \text { основной } \\ & \text { оксид } \rightarrow \text { соль } \\ & \mathrm{SiO}_{2}+\mathrm{CaO} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaSiO}_{3}, \\ & \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{~K}_{2} \mathrm{O} \rightarrow 2 \mathrm{~K}_{3} \mathrm{PO}_{4} \end{aligned}$
Амфотернье оксиды	
С кислотами реагируют как основные оксиды $\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$	С основаниями (щелочами) реагируют как кислотные оксиды

* Только оксиды металлов I н частично II группы главных подгрупп (IA и ILA) периодической системы элементов.

Названия оксидов составляют из слова «оксид» и названия образующего оксид элемента в родительном падеже: CaO - оксид кальция; $\mathrm{Al}_{2} \mathrm{O}_{3}$ - оксид алюминия. Если элемент образует несколько оксидов, то после названия оксида в скобках римской цифрой указывают степень окисления элемента; FeO - оксид железа (II); $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - оксид железа (III); $\mathrm{P}_{2} \mathrm{O}_{3}$ - оксид фосфора (III); $\mathrm{P}_{2} \mathrm{O}_{5}$ - оксид фосфора (V).

2.4. ILOJY푶E OLCIIOB

Почти все химические элементы образуют оксиды. Не получены до настоящего времени только оксиды трех элементов - гелия, неона и аргона.

Способ получения	Примерь
1. Металл + кислород \rightarrow оксид, неметалл + кислород \rightarrow оксид	$\begin{aligned} 2 \mathrm{Mg}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{MgO}, \\ 4 \mathrm{P}+5 \mathrm{O}_{2} & \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$
2. Нерастворимое основание $\stackrel{t^{\bullet}}{\rightarrow}$ $\xrightarrow{\boldsymbol{t}^{\circ}}$ оксид + вода	$\begin{aligned} & \mathrm{Cu}(\mathrm{OH})_{2} \xrightarrow{t^{\prime}} \mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}, \\ & 2 \mathrm{Fe}(\mathrm{OH})_{3} \xrightarrow{t^{+}} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
3. Соль $\stackrel{\mathrm{t}^{\circ}}{ }$ оксид + оксид*	$\mathrm{CaCO}_{3} \xrightarrow{\text { t }} \mathrm{CaO}+\mathrm{CO}_{2} \uparrow$
4. Кислота $\stackrel{\mathrm{t}^{\circ}}{\rightarrow}$ оксид + вода	$\begin{gathered} \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{H}_{2} \mathrm{SiO}_{3} \xrightarrow{t^{\bullet}} \mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$
5. Сложное вещество + + кислород \rightarrow оксид + оксид	$\begin{gathered} 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \uparrow, \\ \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow, \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow \end{gathered}$

[^0]
2.5. OCHOBAHMA. OIPEमEЛEHEE M ХJACCN\$HKAMEX

Основания - это сложные вещества, в состав которых входят атомы металла и гидроксогруппы OH^{-}.
$\mathrm{Me}^{+n}(\mathrm{OH})_{n}^{-1}$ - общая формула оснований
Ме - металл
n - степень окисления металла

Исключением является основание $\mathrm{NH}_{4} \mathrm{OH}$ (гидроксид аммония), которое не содержит атомов металла.

Названия оснований составляют из слова «гидроксид» и названия металла в родительном падеже: КОН - гидроксид калия; $\mathrm{Mg}(\mathrm{OH})_{2}$ - гидроксид магния; $\mathrm{Ca}(\mathrm{OH})_{2}$ гидроксид кальция; $\mathrm{Al}(\mathrm{OH})_{3}$ - гидроксид алюминия.

Если элемент образует несколько оснований, то после названия элемента в скобках римской цифрой указывается степень его окисления: $\mathrm{Fe}(\mathrm{OH})_{2}$ - гидроскид железа (II); $\mathrm{Fe}(\mathrm{OH})_{3}$ - гидроксид железа (III); $\mathrm{Cr}(\mathrm{OH})_{2}$ - гидроксид хрома (II); $\mathrm{Cr}(\mathrm{OH})_{3}$ - гидроксид хрома (III).

2.6. XMMические CBOLICTBA OCHOBAHILI

Щелочи	Нерастворимье основания
1. Действие на индикаторы: фенолфталеин - малиновый цвет, метилоранж - желтый цвет, лакмус - синий цвет	-
2. Основание + кислота \rightarrow \rightarrow соль + вода $2 \mathrm{KOH}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} \text { 1. Основание + кислота } \rightarrow \\ \rightarrow \text { соль }+ \text { вода } \\ 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$
3. Щелочь + кислотный оксид \rightarrow \rightarrow соль + вода $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{KOH}+\mathrm{CuSO}_{\mathbf{4}} \rightarrow \underset{\mathrm{K}}{\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cu}(\mathrm{OH})_{2} \downarrow}$	
Амфотерные гидроксидь	
1. Амфотерный гидроксид + кислота \rightarrow соль + вода $\Rightarrow$$\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	
2. Амфотерный гидроксид + пелочь \rightarrow соль + вода \Rightarrow $\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}{ }^{* *}+2 \mathrm{H}_{2} \mathrm{O}$	

[^1]У амфотерных гидроксидов в кислой среде равновесие смещается в сторону образования солей, а в щелочной в сторону образования гидрокомплексов:

$$
\begin{gathered}
\mathrm{Al}^{3+}+3 \mathrm{OH}^{-} \rightleftarrows \mathrm{Al}(\mathrm{OH})_{3}=\mathrm{Al}(\mathrm{OH})_{3}+ \\
+3 \mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}+\mathrm{H}^{+} .
\end{gathered}
$$

Щелочи - едкие вещества; ови разъедают кожу и ткани. Позтому со щелочами нужно обращаться осторожно! При попадании щелочи на кожу необходимо смыть ее большим количеством воды.

2.7. ПоЛУЧЕННЕ ОСНОВАНИЙ

Способ получения

1. Активный металл + вода \rightarrow щелочь + водород (только металлы $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$)
2. Основной оксид + вода \rightarrow щелочь (только оксиды $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{O}, \mathrm{Cs}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SrO}$, BaO).
3. Соль $1+$ щелочь \rightarrow соль $2+$ нерастворимое основание $\begin{array}{llll}\text { p } & p & p\end{array}$
4. Электролиз растворов солей

Примеры

1. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow$,
$\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow$
2. $\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}$,
$\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}$
3. $\mathrm{CuSO}_{4}+\underset{\mathrm{p}}{2 \mathrm{NaOH}} \rightarrow \underset{\mathrm{p}}{\mathrm{Na}_{2} \mathrm{SO}_{4}}+\underset{\mathrm{p}}{\mathrm{Cu}(\mathrm{OH})_{2} \downarrow,}$
$\underset{\mathbf{p}}{\mathrm{FeCl}_{3}}+\underset{\mathbf{p}}{3 \mathrm{KOH}} \rightarrow \underset{\mathbf{p}}{3 \mathrm{KCl}}+\underset{\mathbf{H}}{\mathrm{Fe}(\mathrm{OH})_{3}} \downarrow$,
$\underset{\mathrm{p}}{\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\mathrm{p}}{\mathrm{Ba}(\mathrm{OH})_{2}} \rightarrow \underset{\mathrm{p}}{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\mathbf{H}}{\mathrm{Sn}(\mathrm{OH})_{2} \downarrow *}$
4. $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { элехтролиз }} \mathrm{H}_{2} \uparrow+\mathrm{Cl}_{2} \uparrow+2 \mathrm{NaOH} ;{ }^{* *}$
[^2]
2.8. КИСЛОТЫ. ОПРЕДЕЛЕНИЕ М КЛАССМФИКАЦМЯ

Кислоты - это сложные вещества, в состав которых входят атомы водорода, способные замещаться на металл, и кислотный остаток.

Названия бескислородных кислот составляют из названия неметалла + буква $\mathrm{O}+$ слово «водородная»: HCl - хлороводородная кислота; HBr - бромоводородная кислота, $\mathrm{H}_{2} \mathrm{~S}$ - сероводородная кислота.

Названия кислородсодержащих кислот составляютсяиз названия элемента, образующего кислоту, с прибавлением окончания -ная, -вая, если степень окисления элемента соответствует номеру его группы (в периодической системе), а по мере понижения степени окисления элемента суффиксы меняются в таком порядке: HClO_{+3} - хлорная кислота; HClO_{3} - хлорноватая кислота; HClO_{2} - хлористая кислота; HClO - хлорноватистая кислота; HNO_{3} - азотная кислота; HNO_{2} - азотистая кислота; $\mathrm{H}_{3} \mathrm{AsO}_{4}$ - мышьяковая кислота; $\mathrm{H}_{3} \mathrm{AsO}_{3}$ - мышьяковистая кислота.

Если элемент образует несколько кислородсодержащих кислот, то к названию кислоты с большим содержанием атомов кислорода добавляется префикс «орто», а к названию кислоты с меньшим содержанием атомов кислорода - префикс «мета»: $\mathrm{H}_{3} \mathrm{PO}_{4}$ - ортофосфорная кислота, HPO_{3} - метафосфорная кислота.

Номенклатура кислот, их ангидридов и кислотных остатков представлена в табл. 6 (см. с. 36-37).

2.9. ХИМИческие СВоІ̆СТВА киСЛот

Химические свойства	Примерьь
1. Действие на индикаторы: метилоранж - розовый цвет, лакмус - красный цвет	$\mathrm{HCl}+$ лакмус \rightarrow красный цвет $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{J} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
2. Кислота + основание \rightarrow \rightarrow соль + вода	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
3. Кислота + основной оксид \rightarrow соль + вода	$\begin{gathered} 2 \mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{O}, \\ 2 \mathrm{HCl}+\mathrm{CuO} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$
4. Кислота + активный металл* \rightarrow соль + водород кислота + неактивный металл** \rightarrow	$\begin{gathered} 2 \mathrm{HCl} \\ +\mathrm{HCl} \\ \mathrm{Mg} \\ \rightarrow \mathrm{Cu} \underset{\rightarrow}{\mathrm{MgCl}_{2}}+\mathrm{H}_{2} \uparrow, \\ \hline \end{gathered}$
5. Кислота $1+$ соль $1 \rightarrow$ \rightarrow кислота $2+$ соль 2 (если образуется осадок, газ, слабый электролит)	$\begin{gathered} 2 \mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow{ }_{2} \uparrow \\ \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow, \\ {\underset{\text { (конц. }}{ } \text {) }}_{\mathrm{H}_{2} \mathrm{SO}_{4}+\underset{\text { cухая соль }}{2 \mathrm{NaCl}} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl} \uparrow,}^{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{HNO}_{3}} \end{gathered}$
6. Разложение некоторых кислот при нагревании	$\begin{gathered} \mathrm{H}_{2} \mathrm{SiO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{H}_{2} \mathrm{SO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$

[^3]
Электрохимический ряд напряжений металлов

Li RbKBaCaNa Mg Al MnZnCrFeNiSn PbHCuHg AgPtAu

Активность металлов возрастает

Активность металлов уменьшается
Большинство кислот растворимо в воде. Некоторые кислородосодержащие кислоты (например, $\mathrm{HNO}_{3}, \mathrm{HMnO}_{4}$, HClO_{4}) в водном растворе являются сильными окислителями, а такие бескислородные кислоты, как $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S}$, сильными восстановителями (см. раздел 9.3).

Номенклатура

Кислота		Кислотный остаток	
$\Phi_{\text {ормула }}$	Название	Формула	Название
HF	Фтороводородная (плавиковая)	F	Фторид
HCl	Хлороводородная (соляная)	Cl ${ }^{-}$	Хлорид
HBr	Бромоводородная	Br	Бромид
HI	Иодоводородная	I	Иодид
$\mathrm{H}_{2} \mathrm{~S}$	Сероводородная	$\underset{\mathbf{S}^{2-}}{ }$	Гидросульфид Сульфид
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Серная	$\begin{aligned} & \mathrm{HSO}_{4}{ }^{-} \\ & \mathrm{SO}_{4}{ }^{-} \\ & \hline \end{aligned}$	Гидросульфат Сульфат
$\mathrm{H}_{2} \mathrm{SO}_{3}$	Сернистая	$\begin{aligned} & \mathrm{HSO}_{3}- \\ & \mathrm{SO}_{3}^{2-} \\ & \hline \end{aligned}$	Гидросульфит Сульфит
HNO_{3}	Азотная	$\mathrm{NO}_{3}{ }^{-}$	Нитрат
HNO_{2}	Азотистая	$\mathrm{NO}_{2}{ }^{-}$	Нитрит
HPO_{3}	Метафосфорная	$\mathrm{PO}_{3}{ }^{-}$	Метафосфат
$\mathrm{H}_{3} \mathrm{PO}_{4}$	(Орто)фосфорная	$\begin{gathered} \mathrm{H}_{4} \mathrm{PO}_{4} \\ \mathrm{HPO}_{4}{ }^{2-} \\ \mathrm{PO}_{4}{ }^{3-} \\ \hline \end{gathered}$	Дигидрофосфат Гидрофосфат Фосфат
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	Дифосфорная (широфосфорная)	$\begin{gathered} \mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7} \\ \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{7} \\ \mathrm{HP}_{2} \mathrm{O}_{7}^{3-} \\ \mathrm{P}_{2} \mathrm{O}_{7}^{4} \\ \hline \end{gathered}$	Тригидродифосфат Дигидродифосфат Гидродифосфат Дифосфат
$\mathrm{H}_{3} \mathrm{AsO}_{4}$	Мышьяковая	$\begin{gathered} \mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{2} \\ \mathrm{HAsO}^{2-} \\ \mathrm{AsO}_{4}^{3-} \\ \hline \end{gathered}$	Дигидроарсенат Гидроарсенат Арсенат
$\mathrm{H}_{3} \mathrm{AsO}_{3}$	Мьшьяковистая	$\begin{gathered} \mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{3} \\ \mathrm{HAsO}^{3} \\ \mathrm{AsO}_{3}{ }^{3} \end{gathered}$	Дигидроарсенит Гидроарсенит Арсенит
HMnO_{4}	Марганцовая	MnO_{4}^{-}	Перманганат
HClO_{4}	Хлорная	$\mathrm{ClO}_{4}{ }^{-}$	Перхлорат
$\mathrm{H}_{2} \mathrm{CrO}_{4}$	Хромовая	$\begin{aligned} & \mathrm{HCrO}_{4} \\ & \mathrm{CrO}_{4}{ }^{2-} \\ & \hline \end{aligned}$	Гидрохромат Хромат
$\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Двухромовая	$\begin{gathered} \mathrm{HCr}_{2} \mathrm{O}_{7^{-}} \\ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \end{gathered}$	Гедродихромат Дихромат
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	Дисерная	$\begin{aligned} & \mathrm{HS}_{\mathrm{O}_{2}} \mathrm{O}_{\mathbf{7}^{-}} \\ & \mathrm{S}_{2} \mathrm{O}_{7}{ }^{-2} \end{aligned}$	Гидродисульфат Дисульфат
$\mathrm{H}_{2} \mathrm{MnO}_{4}$	Марганцовистая	$\begin{aligned} & \mathrm{HMnO}_{4} \\ & \mathrm{MnO}_{4}{ }^{-} \end{aligned}$	Гидроманганат Манганат
$\mathrm{H}_{3} \mathrm{BO}_{3}$	Борная	$\begin{gathered} \mathrm{H}_{2} \mathrm{BO}_{3}- \\ \mathrm{HBO}_{3}{ }^{2-} \\ \mathrm{BO}_{3}{ }^{3-} \end{gathered}$	Дигчдроборат Тидроборат. Борат
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Угольная	$\underset{\mathrm{CO}_{3}^{2-}}{\mathrm{HCO}_{3}^{-}}$	Гидрокарбонат Карбонат
$\mathrm{H}_{2} \mathrm{SiO}_{3}$	Кремниевая	$\mathrm{SiO}_{3}{ }^{2-}$	Силикат
$\mathrm{CH}_{3} \mathrm{COOH}$	Уксусная	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Ацетат

КНСЛОт

Название соли по кислотному остатку	Ангидрид	
	Фрмула $^{\text {о }}$	Название
Фторид	Het	Her
Хлорид	Her	Her
Бромид	Нет	Her
Иоднд	Нет	Her
Гидросульфид Сульфид	Het Het	Нет Het
Гидросульфат Сульфат	SO_{3}	Сериый
Гидросульфит Сульфит	SO_{2}	Сернистый
Нитрат	$\mathrm{N}_{2} \mathrm{O}_{5}$	Азотньй
Нитрет	$\mathrm{N}_{2} \mathrm{O}_{3}$	Азотистый
Метафосфат	$\mathrm{P}_{2} \mathrm{O}_{6}$	Фосфорный
Дигидрофосфат Гидрофосфат Фосфат	$\mathrm{P}_{2} \mathrm{O}_{5}$	Фосфорнылй
Тригидродифосфат Дигидроднфосфат Гидродифосфат Дифосфат	$\mathrm{P}_{2} \mathrm{O}_{5}$	Фосфорный
Дигидроарсенат Гидроарсенат Арсенат	$\mathrm{As}_{2} \mathrm{O}_{5}$	Мышьяковый
Дигидроарсенит Гидроарсенит Арсенит	$\mathrm{As}_{2} \mathrm{O}_{3}$	Мышьяковистый
Перманганат	$\mathrm{Mn}_{2} \mathrm{O}_{7}$	Марганцовый
Перхлорат	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	Хлорный
Гидрохромат Хромат	CrO_{3}	Хромовый
Гидродихромат Дихромат	CrOs	Хромовый
Гидродисулффт Дисулфат	SO_{3}	Серныый
Гидроманганат Манганат	MnO_{3}	Марганцовистый
Дигидроборат Гидроборат Борат	$\mathrm{B}_{2} \mathrm{O}_{3}$	Борный
Гидрокарбонат Карбонат	CO_{2}	Угольный
Силикат	SiO_{2}	Кремниевый
Ацетат	$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	Уксусный

2.10. ПОЛУчеНИE KИCЛOT

Способ получения	Примерьь
$\begin{aligned} & \text { 1. Кислотный оксид + } \\ & + \text { вода } \rightarrow \text { кислота } \end{aligned}$	$\begin{aligned} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{HClO}_{4} . \\ \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \end{aligned}$
2. Соль $1+$ кислота $1 \rightarrow$ \rightarrow соль $2+$ кислота 2	$\begin{gathered} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ 3 \mathrm{CaSO}_{4} \downarrow+2 \mathrm{H}_{3} \mathrm{PO}_{4 .} \\ 2 \mathrm{NaCl}\left(\text { твердая соль) }^{2}+\mathrm{H}_{2} \mathrm{SO}_{4}(\text { конц.) } \rightarrow\right. \\ \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}(\text { газ }) \uparrow, \\ \mathrm{Na}_{2} \mathrm{SiO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow \end{gathered}$
3. Водород + + неметалл \rightarrow газ, газ $\xrightarrow{+\mathrm{H}_{2} \mathrm{O}}$ кислота (растворение газа в воде) - этим способом получают толъко бескислородные кислоты	$\begin{gathered} \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \begin{array}{c} 2 \mathrm{HCl} \uparrow, \mathrm{H}_{2}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{~S} \uparrow \\ +\mathrm{H}_{2} \mathrm{O} \end{array} \\ \mathrm{HCl} \text { (газ) } \xrightarrow{+\mathrm{H}_{2} \mathrm{O}} \mathrm{HCl}_{2} \mathrm{~S} \text { (кислота) }, \\ \mathrm{H}_{2} \mathrm{~S} \text { (газ) } \xrightarrow{+ \text { кислота) }} \end{gathered}$
4. Элемент + сильный окислитель $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ (конц.) или HNO_{3} (разб.)] \rightarrow кислота + + оксиды	$\begin{gathered} 2 \mathrm{P}+5 \mathrm{H}_{2} \mathrm{SO}_{4}\left(\text { конц.) } \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}+\right. \\ +5 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ 3 \mathrm{P}+5 \mathrm{HNO}_{3}(\text { разб. })+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 3 \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{NO} \end{gathered}$

Кислоты разрушают кожу и ткани. Поэтому с кислотами нужно обращаться очень осторожно!

При попадании кислоты на кожу или одежду ее необходимо нейтрализовать раствором соды, а затем смыть водой.

Соли - это сложные вещества, в состав которых входлт атомы металлов и кислотные остатки.

$\mathrm{M}_{m}^{+n} \mathrm{X}_{n}^{-m}$ - общая формула средней соли
Me - металл
X - кислотный остаток
n - степень окисления металла
m - степень окисления кислотного остатка

Название средних солей составляют из названия аниона (кислотного остатка) в именительном падеже и название катионов в родительном падеже. Например: NaCl - хлорид калия; KNO_{3} - нитрат калия; CaCO_{3} - карбонат кальция; FeCl_{2} - хлорид железа (II); FeCl_{3} - хлорид железа (III); FeSO_{4} - сульфат железа (II); $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ сульфат железа (III); CuOHNO_{3} - нитрат гидроксомеди; $\mathrm{NaH}_{3} \mathrm{P}_{2} \mathrm{O}_{7}$ - тригидрофосфат натрия, $\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ хромокальциевые квасцы.

Свойства средних солей можно представить в виде следующих схем:

1. Соль $1+$ кислота $1 \rightarrow$ соль $2+$ кислота 2
(образование осадка \downarrow или газа \uparrow)
$\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SiO}_{3}\right)}$
(каждая предыдущая кислота вытесняет из соли последующую).
2. Соль $1+$ щелочь \rightarrow соль $2+$ нерастворимое основание
3. Соль $1+\underset{\mathbf{p}}{\text { соль }} 2 \rightarrow \underset{\mathbf{p}}{\text { соль }} 3+\underset{\mathrm{H}}{\text { соль }} 4$
4. Соль $1+$ металл $1 \rightarrow$ соль $2+$ металл 2
p
p
(металл 1 должен быть активнее металла 2)
5. Разложение некоторых солей при нагревании*.

Примеры

$$
\text { 1. } \begin{aligned}
& \mathrm{Na}_{2} \mathrm{SiO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow, \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow, \\
& \mathrm{CuS}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{~S} \uparrow
\end{aligned}
$$

2. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KOH} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \downarrow$,
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{Fe}(\mathrm{OH})_{3} \downarrow$
```
3. \(\underset{\mathbf{p}}{2 \mathrm{AgNO}_{3}}+\underset{\mathbf{p}}{\mathrm{BaCl}} \rightarrow \underset{\mathbf{p}}{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\mathbf{H}}{2 \mathrm{AgCl}} \downarrow\),
\(\mathrm{CuSO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{CuCl}_{2}+\mathrm{BaSO}_{4} \downarrow\) \(\begin{array}{llll}\mathbf{p} & \mathbf{p} & \mathbf{p} & \mathbf{H}\end{array}\)
```

4. $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Hg} \downarrow$,

$$
\mathbf{p} \quad \mathbf{p}
$$

$\mathrm{CuCl}_{2}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{Cu} \downarrow$
p
p
5. $\mathrm{CaCO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaO}+\mathrm{CO}_{2}$.

[^4]
2.13. СПОСОБЫ ПоЛУЧЕНй СРЕДНИХ соЛЕУ

1. $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$
2. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \uparrow$
3. $\mathrm{Zn}+\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Sn}$
4. $\mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}$
5. $\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
6. $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{SO}_{3} \rightarrow \mathrm{BaSO}_{4} \downarrow+\mathrm{H}_{2} \mathrm{O}$
7. $2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
8. $2 \mathrm{NaOH}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \downarrow$
9. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
10. $\underset{\mathrm{p}}{\mathrm{Na}_{2} \mathrm{SO}_{4}}+\underset{\mathrm{p}}{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}} \rightarrow \underset{\mathrm{p}}{2 \mathrm{NaNO}_{3}}+\underset{\mathrm{H}}{\mathrm{BaSO}_{4} \downarrow}$

Таблицу растворимости солей, оснований и кислот в воде см. в приложении 3 (с. 276-277).

При написании уравнений реакций взаимодействия металлов с растворами солей необходимо помнить, что металл из раствора соли вытесняется более активным металлом. Например, в ряду металлов $\mathrm{Mg}, \mathrm{Al}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Cr}$, $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{Ag}$, являющегося частью электрохимического ряда напряжений металлов (см. с. 35), каждый предыдущий металл вытесняет все последующие в этом ряду металлы из водных растворов их солей.

2.14. спосоБы получения кисתЫХ солвһ

Способ получения	Примеры
1. Реакция неполной нейтрализации кислоты основанием: кислота (избыток) + основание (недостаток) \rightarrow \rightarrow кислая соль + вода	
2. Реакция кислоты и средней соли той же кислоты: соль средняя + кислота \rightarrow кислая соль	
3. Реакция гидролиза* некоторых средних солей: средняя соль $+\mathrm{H}_{2} \mathrm{O} \rightleftarrows$ \rightleftarrows кислая соль + щелочь (знак \rightleftharpoons означает, что реакция обратима)	$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NaHCO}_{3}+\mathrm{NaOH}$ $\mathrm{K}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \underset{\substack{\text { гндросульфид } \\ \text { калия }}}{\rightleftarrows \mathrm{KHS}+\mathrm{KOH}}$

Названия кислых солей составляют добавлением к названию аниона соответствующей средней соли приставки *гидро-» и, при необходимости, соответствующего числительного: $\mathrm{K}_{2} \mathrm{HPO}_{4}$ - гидрофосфат калия; $\mathrm{KH}_{2} \mathrm{PO}_{4}$ дигидрофосфат калия; $\mathrm{Na}\left(\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}\right)$ - тригидрофосфат натрия.

[^5]
2.15. Спосовы получЕНия ОсновНых солЕП

Способ получения	Примерьи
1. Реакция неполной нейтрализации основания кислотой: основание (избыток) + + кислота (недостаток) \rightarrow основная соль + вода	
2. Реакция неполного обмена средней соли и щелочи: средняя соль + щелочь \rightarrow основная соль + средняя соль	$\begin{gathered} 2 \mathrm{CuSO}_{4}+2 \mathrm{KOH} \rightarrow(\mathrm{CuOH})_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}, \\ \mathrm{CaSO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow(\mathrm{CaOH})_{2} \mathrm{SO}_{4}, \\ \mathrm{FeCl}_{3}+2 \mathrm{KOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{Cl}+2 \mathrm{KCl} \end{gathered}$
3. Реакция гидролиза некоторых средних солей: средняя соль $+\mathrm{H}_{2} \mathrm{O} \rightleftarrows$ \rightleftharpoons основная соль + кислота	

Название основных солей составляют добавлением к названию аниона (кислотного остатка) соответствующей средней соли приставки «гидроксо-»: $\mathrm{Mg}(\mathrm{OH}) \mathrm{Cl}$ - хлорид гидроксомагния; $\mathrm{Al}(\mathrm{OH})_{2} \mathrm{Cl}$ - хлорид дигидроксоалюминия; $(\mathrm{CuOH})_{2} \mathrm{CO}_{3}$ - карбонат гидроксомеди; $\mathrm{Fe}(\mathrm{OH})_{2} \mathrm{NO}_{3}$ нитрат дигидроксожелеза.

2.16. B3AMMOCBA3B CPEDILIX, KHCIBXX X OCROBHBLX COIEI

Например:

$$
\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2} \underset{\mathrm{H}_{2} \mathrm{SO}_{4}+}{+\mathrm{Ca}(\mathrm{OH})_{2}} \mathrm{CaSO}_{4} \underset{\mathrm{H}_{2} \mathrm{SO}_{4}+}{+\mathrm{Ca}(\mathrm{OH})_{2}}(\mathrm{CaOH})_{2} \mathrm{SO}_{4}
$$

В этой схеме идут следующие реакции:

1) $\mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2} ;$
2) $\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$;
3) $\mathrm{CaSO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow(\mathrm{CaOH})_{2} \mathrm{SO}_{4}$;
4) $(\mathrm{CaOH})_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$;
5) $(\mathrm{CaOH})_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$;
6) $\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}+3 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2(\mathrm{CaOH})_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.

Приведем еще несколько примеров перехода от кислых и основных солей к средним:
$\mathrm{NaH}_{2} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+2 \mathrm{H}_{2} \mathrm{O} ;$
$\mathrm{KHSO}_{3}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$;
$\mathrm{FeOHCl} 2+\mathrm{HCl} \rightarrow \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$;
$\mathrm{Al}(\mathrm{OH})_{2} \mathrm{NO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O}$;
$(\mathrm{CuOH})_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{CuS}+2 \mathrm{H}_{2} \mathrm{O}$;
$\mathrm{Sr}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{2}+2 \mathrm{Sr}(\mathrm{OH})_{2} \rightarrow \mathrm{Sr}_{3}\left(\mathrm{AsO}_{4}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$.
Таким образом, кислые соли можно получить при избытке кислоты (реакции 1,5), а основные соли - при избытке основания (реакции 3, 6). При получении средних солей из кислых нужно к кислой соли прибавить основание (реакция 2), а из основных - к основной соли прибавить кислоту (реакция 4).

2.17. FEHETAYECRA CBA3B

В приведенной схеме получения веществ одного класса из веществ другого класса можно выделить две линии генетической связи, одна из которых идет от металла (в данном случае от Ba): $\mathrm{Ba} \rightarrow \mathrm{BaO} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaSO}_{4} \rightarrow$ $\rightarrow \mathrm{Ba}\left(\mathrm{HSO}_{4}\right)_{2} \rightarrow(\mathrm{BaOH})_{2} \mathrm{SO}_{4}$, а другая - от неметалла (в данном случае от S): $\mathrm{S} \rightarrow \mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \rightarrow \mathrm{Ba}\left(\mathrm{HSO}_{4}\right)_{2} \rightarrow$ $\rightarrow(\mathrm{BaOH})_{2} \mathrm{SO}_{4}$.

3. ПЕРИОДИЧЕСКИЙ ЗАКОН Д. И. MEHДЕЛЕЕВА

Д. И. Менделеев считал основной характеристикой элементов их атомный вес (атомную массу). Расположив все известные элементы в порядке возрастания их атомных масс, он обнаружил связь свойств химических элементов с их атомными массами и в 1869 г. сформулировал Периодический закон:
«...Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

В такой формулировке (несмотря на огромное естественнонаучное и философское значение самого закона) физический смысл обобщенных Д. И. Менделеевым фактов долгое время оставался непонятным (из-за отсутствия в XIX в. каких-либо представлений о сложности строения атома). В 1913 г. ученик Резерфорда Г. Мозли установил закон, согласно которому стало возможным однозначно определять заряд ядра любого элемента и тем самым его порядковый номер в периодической системе. Закон Г. Мозли подтвердил правильность расположения элементов в таблице. Современная формулировка Периодического закона звучит следующим образом:
«Свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов».

На основании Периодического закона Д. И. Менделеев составил периодическую систему элементов, т. е. систему классификации химических элементов, позволяющую выявлять связи между элементами, характеризующими их различие и сходство. Периодический закон и основанную на нем периодическую систему можно выразить в форме таблицы. Периодическая таблица лвляется графическим изображением периодической системы. Периодическая система едина, а ее табличное изображение может иметь различные формы (см. приложения 1, 2) (с. 272-275).

3.1. HEROTOPGE MCTOPMYECRUE ДATЫ, HMELOME OTHOMEHIE R OTKPGTTHO М РАЗВНТННО IIEPHOДKЧECKOTO ЗАKOHA

1. В 1829 г. немецкий ученый И. В. Деберейнер опубликовал таблицу, в которой в группы по 3 элемента объединялись элементы со сходными свойствами (триады Деберейнера).
2. В 1863 г. английский ученый Дж. Ньюлендс расположил по 8 элементов в каждой группе (закон октав Ньюлендса), повторение свойств наблюдалось на 8 -м элементе, считая от исходного.
3. В 1864 г. немецкий ученый Ю. Л. Мейер расположил 44 элемента в 6 вертикальных столбцах в соответствии с их валентностью по водороду.
4. В 1869 г. русский ученый Д. И. Менделеев открыл периодический закон и опубликовал свой первый вариант периодической системы химических элементов.
5. В 1875 г. французский ученый П. Э. Лекок де Буабодран открыл новый элемент галлий, существование и свойства которого предсказал Д. И. Менделеев, назвавший этот элемент "экаалюминий".
6. В 1879 г. шведский ученый Л. Ф. Нильсон открыл новый элемент скандий, существование и свойства которого предсказал Д. И. Менделеев, назвавший этот элемент *экабор».
7. В 1886 г. немецкий ученый К. Винклер открыл новый элемент германий, существование и свойства которого предсказал Д. И. Менделеев, назвавший этот элемент «экасилиций».
8. В 1893-1898 гг. английский ученый В. Рамзай открыл сначала инертный газ аргон, а позже и другие инертные газы, которые в современном варианте периодической системы химических элементов занимают главную подгруппу VIII группы.

3.2. СТРАНИЦЫ ЖИЗНИ И НАУЧНОЙ ДЕЯТЕЛЬНОСТМ Д. И. МЕНДЕЛЕЕВА (1834-1907)

Дмитрий Иванович Менделеев родился в городе Тобольске 27 января 1834 г. В Тобольской гимназии он получил среднее образование, после чего поступил в Петербургский педагогический институт и окончил его с золотой медалью в 1855 г.

В 1856 г. защитил магистерскую диссертацию, а в 1865 г. был избран профессором Петербургского университета, в котором в течение 25 лет вел научную и педагогическую работу.

Самым важным результатом научной деятельности Д. И. Менделеева было открытие Периодического закона и создание периодической системы химических элементов. Известны и другие работы Д. И. Менделеева: «Исследование водных растворов по удельному весу», «О соединении спиртас водой», "Понимание растворов как ассоциаций», книга "Основы химии». Теория растворов, разработанная Д. И. Менделеевым, является фундаментом современной теории о растворах.

Наряду с научной и педагогической деятельностью Д. И. Менделеев уделял внимание и развитию промышленности России: изучил технологию добычи и переработки нефти, внес определенный вклад в развитие металлургии на востоке России, выдвинул задачу получения железа и стали из руды.

В 1892 г. Д. И. Менделеев назначается хранителем Палаты мер и весов и сочетает эту работу с большой научной деятельностью до последних дней своей жизни.

Открытие Периодического закона Д. И. Менделеевым и создание им периодической системы химических элементов явились триумфом в развитии химии XIX столетия. Накопившиеся к этому времени знания о свойствах 63 химических элементов были приведены Д. И. Менделеевым в строгий порядок (табл. 7). Соткрытием Периодического закона появилась возможность предвидеть и описывать новые элементы и их соединения (см. с. 46, 47).

Элементы, расположенные Д. И. Менделеевым в порядке возрастания их атомных масс

				$\begin{aligned} 0 \\ 0 \\ 0 \\ 0 \end{aligned}$			
водород	H	1	1	$\mathrm{H}_{2} \mathrm{O}$	1	-	-
гелий	He	4	2	-	-	-	-
литий	Li	7	3	$\mathrm{Li}_{2} \mathrm{O}$	1	-	-
бериллий	Be	9	4	BeO	2	-	-
бор	B	11	5	$\mathrm{B}_{2} \mathrm{O}_{3}$	3	-	-
углерод	C	12	6	CO_{2}	4	CH_{4}	$\cdot 4$
930T	N	14	7	$\mathrm{N}_{2} \mathrm{O}_{5}$	5	NH_{3}	3
кислород	0	16	8	-	-	$\mathrm{H}_{2} \mathrm{O}$	2
фтор	F	19	9	-	-	HF	1
неон	Ne	20	10	-	-	-	-
натрий	Na	23	11	$\mathrm{Na}_{2} \mathrm{O}$	1	-	-
магний	Mg	24	12	MgO	2	-	-
алюминий	Al	27	13	$\mathrm{Al}_{2} \mathrm{O}_{3}$	3	-	-
кремний	Si	28	14	SiO_{2}	4	SiH_{4}	4
фосфор	P.	31	15	$\mathrm{P}_{2} \mathrm{O}_{5}$	5	PH_{3}	3
cepa	S	32	16	SO_{3}	6	$\mathrm{H}_{2} \mathrm{~S}$	2
хлор	Cl	35	17	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	7	HCl	1
аргон	Ar	40	18	-	-	-	-

3.3. CTPYKTYPA IIEPHOДНपЕСZO:

(см. Приложения 1, 2) (с. 272-275)

Период - это горизонтальный ряд элементов, расположенных в порядке возрастания порядкового номера от первого s-элемента ($n s^{1}$) до шестого p-элемента ($n s^{2} n p^{6}$)

Каждый период (кроме первого) начинается активным щелочным металлом и заканчивается инертным газом, перед которым стоит активный неметалл (галоген).

Гpynna - это вертикальный ряд элементов, обладающих однотипным электронным строением и являющихся химическими аналогами.

В периодической системе каждый элемент имеет строго определенный порядковый номер и занимает строго определенное место.

4. CTPOEHME ATOMA K IEPJOHSYECKAя CHCTEMA Д. М. МЕНमЕЛЕЕВА

4.1. АТОМНОЕ ЯДРО. иЗОТОПЫ

Атом состоит из ядра, в котором сосредоточена основная масса атома, и движущихся вокруг него электронов.

Атомное ядро заряжено положительно и состоит из протонов и нейтронов. Таким образом, атом характеризуют три элементарные частицы (табл. 8).

таблица 8
Характеристики элементарных частиц

Название частиць	Символ	Заря		Масса	
		Кулон (КК)	Относи- тельная единица	кг	а. е. м.
Протон	${ }_{1}^{1} p$	$1,6 \cdot 10^{-19}$	+1	$1,7 \cdot 10^{-27}$	1
Нейтрон	${ }_{0}^{1} n$	0	0	$1,7 \cdot 10^{-27}$	1
Электрон	\bar{e}	$1,6 \cdot 10^{-19}$	-1	$9,11 \cdot 10^{-}$	0,0005486

$$
N\left({ }_{1}^{1} p\right)=Z=N_{\text {nop }}
$$

$N\left({ }_{1}^{1} p\right)$ - число протонов в ядре атома; Z - заряд ядра; $N_{\text {пор. }}$ - порядковый номер в периодической системе.

$$
N\left({ }_{0}^{1} n\right)=A-N\left({ }_{1}^{1} p\right)=A-Z
$$

$$
N\left({ }_{1}^{1} p\right)+N\left({ }_{0}^{1} n\right)=A
$$

A - массовое число; $A \cong A_{r}$ (целое число).
Атомы одного элемента, которые имеют одинаковый заряд ядра, но разные массовые числа, называются изотопами. Изотопы содержат одинаковое число протонов и разное число нейтронов. Например, известны атомы водорода с массовыми числами 1,2 и $3:{ }_{1}^{1} \mathrm{H}$ - протий, ${ }_{1}^{2} \mathrm{H}$ - дейтерий, ${ }_{1}^{3} \mathrm{H}$ - тритий $\left({ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{D},{ }_{1}^{3} \mathrm{~T}\right)$.

У хлора 2 изотопа: ${ }_{17}^{35} \mathrm{Cl}\left(A_{r}=35 ; 77,3 \%\right)$ и ${ }_{17}^{37} \mathrm{Cl}\left(A_{r}=37\right.$; $22,7 \%$). $A_{\text {r }}(\mathrm{Cl})$ ср $=(35 \cdot 77,3+37 \cdot 22,7): 100=35,454$. Эта величина является средней для двух изотопов хлора; она приведена для хлора в периодической системе Д. И. Менделеева.

4.2. COGTOAHME MJELTPOHA B ATOME. KBARTOBGE ELCNR

Электрон - от греч. elektron (янтарь).

$$
N(\bar{e})=N\left({ }_{1}^{1} p\right)=N_{\text {нер. }}
$$

$N(\bar{e})$ - число электронов в атоме
$N\left({ }_{1}^{1} p\right)$ - число протонов в атоме
$N_{\text {нор. }}$ - порядковый номер элемента в периодической системе.

В 1924 г. Луи де Бройль установил двойственную природу электрона: электрон - частица и волна.

Движение электрона в атоме изучает квантовая механика.

Согласно квантово-механической теории, электроны, двигаясь в атоме, образуют так называемое электронное облако. На рис. 1 приведена форма электронного облака атома водорода.

Pric. 1 Электронное облако водорода с неравномерной ПЛОтसОСТЬю

Электронное облако - это модель состояния электрона в атоме.

Область пространства вокруг атомного лдра, гдеэнергетически выгоднее всего находиться электрону, называется орбиталью.

Энергетическое состояние электрона в атоме характеризуется набором четырех квантовых чисел: n, l, m_{l}, m_{s} (табл. 9).

Квантовые числа $n, l, m_{1}, m_{\text {s }}$ точно характеризуют поведение электрона в атоме водорода. Для многоэлектронных атомов точного решения квантовая механика не дает. Законы движения электронов в квантовой механике описываются уравнением Шредйнгера, которое играет в квантовой механике такую же роль, какую законы Ньютона в классической механике. Поскольку электрон обладает свойствами частицы и волны одновременно, то его движение можно описать с помощью некой волновой функции ψ. Физический смысл волновой функдии $\psi(x, y, z)$ заключается в том, что квадрат этой функции $|\psi(x, y, z)|^{2}$ пропорционален вероятно́сти нахождения электрона в точке пространства с координатами x, y, z.

Квантовые числа

No	Название квантового числа	Символ (обозначение)	Какие значения принимает	Что характеризует (определяет)
1	Главное	n	$\begin{gathered} n=1,2,3, \\ \ldots, 7, \ldots \infty \end{gathered}$	Энергию энергетического уровня (размер электронного облака)
2	Орбитальное (побочное)	l	$\begin{gathered} l=0,1,2, \\ 3, \ldots(n-1) \end{gathered}$	Энергию энергетического подуровня (форму электронного облака, рис. 2).
3	Магнитное	m_{l}	$\begin{gathered} m_{l}=-l, \ldots, \\ 0, \ldots,+l \\ \text { всего. } \\ (2 l+1) \\ \text { значений } \end{gathered}$	Направленность (ориентацию) электронного облака в пространстве (рис. 2, 4)
4	Спиновое	m_{s}	$\begin{aligned} & m_{\mathrm{s}}=+1 / 2 \\ & m_{s}=-1 / 2 \end{aligned}$	Способ движения (спин) электрона вокруг своей оси (собственный момент количества движения электрона в атоме)

Puc. 2
Формы и пространственная ориентация электронных облаков 1s, 2p, 3d

4.3. ОЛERTPOHHAЯ OBOJOTRA ATOMA

Рнс. 3
Схема подразделения энергетических уровней на подуровни
A - электронные облака с близкой энергией в атоме составляют электронный слой, энергетический уровень (э. у.), который обозначается цифрами 1, 2, 3, 4... Э. у. характеризует энергию связи электрона с ядром. Э. у. образует энергетические подуровни (э. п.): s, p, d, f.
Б - Э. п. могут обозначаться в виде квантовых лчеек: $\square \uparrow \downarrow \uparrow \downarrow$ - свободвая, заполненные ваполовину и полностью заполненная ячейки.

Форма и направлевность электронных облаков атомов элементов первых четырех периодов периодической системы элементов Д. И. Мевделеева

Число орбиталей по энергетическим подуровням отвечает формуле $2 l+1$.

$$
\begin{aligned}
& N_{0}=n^{2}, \\
& N(\bar{e})_{\text {max }}=2 n^{2}
\end{aligned}
$$

N_{\circ} - общее число орбиталей, $N(\bar{e})_{\text {max }}$ - общее (максимальное) число электронов в слое, n - главное квантовое число.

4.4. ЗДEKTPOHHAR \$OPMУЛA ATOMA. PACMPEДEПEHME OMERTPOHOB B ATOME

Электронная формула показывает распределение электронов на орбиталях в атоме:

Графическое изображение электронной формульь атома углерода
${ }_{15}^{31} \mathrm{P} \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

Модель электронной оболочки атома фосфора
Формирование электронной оболочки атома происходит в соответствии с тремя принципами: принципом минимума энергии, определяющим заполнение атомных орбиталей с наименьшей энергией ($1 s<2 s<2 p<3 s<3 p<4 s \approx 3 d<$ $<4 p<5 s \approx 4 d<5 p<6 s \approx 4 f \approx 5 d<6 p<7 s$); принципом (запрет) Паули, диктующий присутствие на атомной орбитали не более 2 электронов с противоположно направленными спинами; и правилом Хувда, предписывающим заполнение атомных орбиталей электронами так, чтобы их суммарный спин был максимальным.

Химические элементы по строению их атомов можно классифицировать следующим образом:

Tип элемента	Электронная конфигурация валентных электронов
s-элементы - металлы IA, IIA групп и неметаллы ${ }_{2} \mathrm{H}_{2} \mathrm{He}$	$\ldots n s^{1-2}$
p-элементы - металлы и неметаллы от IIIA до VIIIA групп, исключая ${ }_{1} \mathrm{H}_{2}{ }_{2} \mathrm{He}$	$\ldots n s^{2} n p^{16}$
d-элементы - металлы от IB до VIIIB групп	$(n-1) d^{1-10} n s^{2(1)}$
f-элементы - металлы лантаноиды (№№ 58-71) и актиноиды (№№ 90-103)	$\begin{aligned} & (n-1) d^{1}(n-2) f^{1-14} n s^{2}, \text { но } \\ & \text { есть и исключения } \end{aligned}$

Российским ученым Клечковским было сформулировано правило (правило Клечковского), согласно которому «уровни и подуровни атомов заполняются электронами в порядке возрастания суммы главного и орбитального квантовых чисел ($n+l$). При одном и том же значении суммы ($n+l$) заполнение подуровней происходит в порядке увеличения главного квантового числа n ».

Пример. Для энергетического подуровня $4 s$ сумма $(n+l)=4$, а для подуровня $3 d$ сумма $(n+l)=3+2=5$. Поэтому, по правилу Клечковского, сначала заполняется подуровень $4 s$, а затем $3 d$. На подуровнях $3 d, 4 p$ и $5 s$ сумма $(n+l)=5$. В этом случае заполнение идет в порядке $3 d \rightarrow 4 p \rightarrow 5 s$.

В табл. 10, 11 и на рис. 5 показан порядок заполнения электронных энергетических подуровней в атомах элементов в соответствии с правилом Клечковского.

Рис. 5
Последовательность заполнения электронных энергетических подуровней в атоме

Из правила Клечковского встречаются исключения, когда энергии близких подуровней незначительно отличаются друг от друга. Например, подуровень $5 d$ заполняется одним электроном ($5 d^{1}$) раньше, чем $4 f$, а $6 d^{1-2}$ - раньше, чем $5 f$.

Согласно принципу наименьшей энергии, электрону выгоднее занять подуровень «вышележащего" уровня, хотя подуровень «нижележащего» уровня еще не заполнен (табл. 11, рис. 5).

Распределение электронов в атоме

Квантовые		
$\begin{gathered} \text { главное } \\ n \\ n=1,2,3, \ldots, \infty \end{gathered}$	$\begin{gathered} \text { орбитальное } \\ l=0,1,2,3, \ldots,(n-1) \end{gathered}$	$\begin{gathered} \text { магнитное } \\ m_{l} \\ m_{l}=-l, \ldots, 0, \ldots,+l \end{gathered}$
Уровень	Подуровень	Орбиталь
(K) $n=1$	$l=0(1 s)$	$m_{l}=0$
(L) $n=2$	$\begin{aligned} & l=0(2 s) \\ & l=1(2 p) \end{aligned}$	$\begin{gathered} m_{l}=0 \\ m_{l}=-1,0,+1 \end{gathered}$
(M) $n=3$	$\begin{aligned} & l=0(3 s) \\ & l=1(3 p) \\ & l=2(3 d) \end{aligned}$	$\begin{gathered} m_{l}=0 \\ m_{l}=-1,0,+1 \\ m_{l}=-2,-1,0,+1,+2 \end{gathered}$
(N) $n=4$	$\begin{aligned} & l=0(4 s) \\ & l=1(4 p) \\ & l=2(4 d) \\ & l=3(4 f) \end{aligned}$	$\begin{gathered} m_{l}=0 \\ m_{l}=-1,0,+1 \\ m_{l}=-2,-1,0,+1,+2 \\ m_{l}=-3,-2,-1,0,+1,+2,+3 \end{gathered}$

Все элементы в периодической системе делят по характеру заполнения их атомов электронами на 4 типа:

- s-элементы: заполняется электронами s-подуровень внешнего уровня. К ним относятся первые два элемента каждого периода (всего 14 элементов): $\mathrm{H}, \mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{Na}$, Mg, K, Ca, Rb, Sr, Cs, Ba, Fr, Ra.
- p-элементы: заполняется электронами p-подуровень внешнего уровня. К ним относятся последние 6 элементов каждого периода (всего 30 элементов): $\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Ne}$, $\mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Ar} ; \mathrm{Ga}, \mathrm{Ge}, \mathrm{As}, \mathrm{Se}, \mathrm{Br}, \mathrm{Kr} ; \mathrm{In}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Te}, \mathrm{I}$, Xe ; $\mathrm{Tl}, \mathrm{Pb}, \mathrm{Bi}, \mathrm{Po}, \mathrm{At}, \mathrm{Rn}$.

по энергетическим уровням и подуровням

числа		
$\begin{gathered} \text { спиновое } \\ m_{s} \\ m_{s}=+1 / 2,-1 / 2 \end{gathered}$	Максимальное число электронов на подуровне $N(\bar{e})_{\text {max }}=$$2(2 l+1)$	Максимальное число эектронов на энергетическом уровне $N(\bar{e})_{\text {mar }}=2 n^{2}$
Графическое изображение заполненного подуровня		
$1 \mathrm{~s} \downarrow \uparrow$	$2\left(1 s^{2}\right)$	$1 s^{2} \Rightarrow 2 \bar{e}$
$2 s, \downarrow \uparrow$	$2\left(2 s^{2}\right)$	$2 s^{2} 2 p^{6} \Rightarrow 8 \bar{e}$
$2 p, \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	$6\left(2 p^{6}\right)$	
$3 s \downarrow \uparrow$	$2\left(3 s^{2}\right)$	$3 s^{2} 3 p^{6} 3 d^{10} \Rightarrow 18 \bar{e}$
$3 p \quad \downarrow \uparrow \mid \uparrow \uparrow \downarrow \uparrow$	6 (3p ${ }^{6}$)	
	10 (3d ${ }^{10}$)	
$4 s, \downarrow \uparrow$	2 (4s ${ }^{2}$)	$4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} \Rightarrow 32 \bar{e}$
$4 p \quad \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	6 (4p ${ }^{6}$)	
$4 d \quad \downarrow \uparrow\|\downarrow \uparrow\| \downarrow \uparrow\|\downarrow \uparrow\| \downarrow \uparrow$	$10\left(4 d^{10}\right)$	
$4 f \quad \downarrow \uparrow\|\downarrow \uparrow \downarrow \uparrow\| \downarrow\|\downarrow \uparrow\| \downarrow \uparrow \mid \uparrow$	14 (4f ${ }^{4}$)	

- d-элементы: заполняется электронами d-подуровень второго снаружи уровня. К ним относятся элементы вставных декад больших периодов, располагающиеся между s - и $р$-элементами (всего 32 элемента): $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$, Fe, Co, Ni, Cu, Zn; Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd; $\mathrm{La}, \mathrm{Hf}, \mathrm{Ta}, \mathrm{W}, \mathrm{Re}, \mathrm{Os}, \mathrm{Ir}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Hg} ; \mathrm{Ac}, \mathrm{Ku}$.
- f-элементы: заполняется электронами f-подуровень третьего снаружи уровня. К ним относятся лантаноиды и актиноиды (всего 28 элементов): $\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Pm}, \mathrm{Sm}, \mathrm{Eu}$, $\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$ (лантаноиды); Th, Pa, U, $\mathrm{Nb}, \mathrm{Pu}, \mathrm{Am}, \mathrm{Cm}, \mathrm{Bk}, \mathrm{Cf}, \mathrm{Es}, \mathrm{Fm}, \mathrm{Md}, \mathrm{No}, \mathrm{Lr}$ (актиноиды) (см. приложения 1 и 2).

Распределение электронов в атомах для элементов

Период	Z	Элемент	$n=1$	$n=2$		$n=3$		
			1s	$2 s$	$2 p$	$3 s$	$3 p$	3d
1	1	H	1					
	2	He	2					
	3	Li	2	1				
	4	Be	2	2				
	5	B	2	2	1			
2	6	C	2	2	2			
	7	N	2	2	3			
	8	0	2	2	4			
	9	F	2	2	5			
	10	Ne	2	2	6			
	11	Na	2	2	6	1		
	12	Mg	2	2	6	2		
	13	Al	2	2	6	2	1	
3	14	Si	2	2	6	2	2	
	15	P	2	2	6	2	3	
	16	S	2	2	6	2	4	
	17	Cl	2	2	6	2	5	
	18	Ar	2	2	6	2	6	
	19	K	2	2	6	2	6	
	20	Ca	2	2	6	2	6	
4	21	Sc	2	2	6	2	6	1
	22	Ti	2	2	6	2	6	2
	23	V	2	2	6	2	6	3
	24	Cr	2	2	6	2	6	5
	25	Mn	2	2	6	2	6	5
	26	Fe	2	2	6	2	6	6
	27	Co	2	2	6	2	6	7
	28	Ni	2	2	6	2	6	8
	29	Cu	2	2	6	2	6	10
	30	Zn	2	2	6	2	6	10
	31	Ga	2	2	6	2	6	10
	32	Ge	2	2	6	2	6	10
	33	As	2	2	6	2	6	10
	34	Se	2	2	6	2	6	10
	35	Br	2	2	6	2	6	10
	36	$\mathbf{K r}$	2	2	6	2	6	10

семв периодов (электронная ковфигурация атома әлемента)

$n=4$				$n=5$				$n=6$				$n=7$
48	$4 p$	4d	$4 f$	$5 s$	$5 p$	$5 d$	$5 f$	$6 s$	$6 p$	$6 d$	67	7 s
												.
1												
2												
2		.										
2												
2												
1												
2												
2		.										
2												
2												
1												
2												
2	1									.		
2	2											
2	3											
2	4											
2	5											
2	6											

Период	Z	Эле. мент	$n=1$	$n=2$		$n=3$		
			$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	$3 d$
5	37	Rb	2	2	6	2	6	10
	38	Sr	2	2	6	2	6	10
	39	Y	2	2	6	2	6	10
	40	Zr	2	2	6	2	6	10
	41	Nb	2	2	6	2	6	10
	42	Mo	2	2	6	2	6	10
	43	Tc	2	2	6	2	6	10
	44	Ru	2	2	6	2	6	10
	45	Rh	2	2	6	2	6	10
	46	Pd	2	2	6	2	6	10
	47	Ag	2	2	6	2	6	10
	48	Cd	2	2	6	2	6	10
	49	In	2	2	6	2	6	10
	50	Sn	2	2	6	2	6	10
	51	Sb	2	2	6	2	6	10
	52	Te	2	2	6	2	6	10
	53	I	2	2	6	2	6	10
	54	Xe	2	2	6	2	6	10
	55	Cs	2	2	6	2	6	10
	56	Ba	2	2	6	2	6	10
	57	La	2	2	6	2	6	10
	58	Ce	2	2	6	2	6	10
	59	Pr	2	2	6	2	6	10
	60	Nd	2	2	6	2	6	10
6	61	Pm	2	2	6	2	6	10
	62	Sm	2	2	6	2	6	10
	63	Eu	2	2	6	2	6	10
	64	Gd	2	2	6	2	6	10
	65	Tb	2	2	6	2	6	10
	66	Dy	2	2	6	2	6	10
	67	Ho	2	2	6	2	6	10
	68	Er	2	2	6	2	6	10
	69	Tm	2	2	6	2	6	10

Продолжение табл. 11

$n=4$									$n=5$				$n=6$		$n=7$
$4 s$	$4 p$	$4 d$	$4 f$	$5 s$	$5 p$	$5 d$	$5 f$	$6 s$	$6 p$	$6 d$	$6 f$	$7 s$			
2	6			1											
2	6			2											
2	6	1		2											
2	6	2		2											
2	6	4		1											
2	6	5		1											
2	6	5		2											
2	6	7		1											
2	6	8		1											
2	6	10													
2	6	10		1											
2	6	10		2											
2	6	10		2	1										
2	6	10		2	2										
2	6	10		2	3										
2	6	10		2	4										
2	6	10		2	5										
2	6	10		2	6										
2	6	10		2	6			1							
2	6	10		2	6			2							
2	6	10		2	6	1		2							
2	6	10	2	2	6			2							
2	6	10	3	2	6			2							
2	6	10	4	2	6			2							
2	6	10	5	2	6			2							
2	6	10	6	2	6			2							
2	6	10	7	2	6			2							
2	6	10	7	2	6	1		2							
2	6	10	9	2	6			2							
2	6	10	10	2	6			2							
2	6	10	11	2	6			2							
2	6	10	12	2	6			2							
2	6	10	13	2	6			2							

Продолжение табл. 11

$n=4$									$n=5$			
48	$4 p$	$4 d$	$4 f$	58	$5 p$	$5 d$	$5 f$	$6 s$	$6 p$	$6 d$	$6 f$	78
2	6	10	14	2	6			2				
2	6	10	14	2	6	1		2				
2	6	10	14	2	6	2		2				
2	6	10	14	2	6	3		2				
2	6	10	14	2	6	4		2				
2	6	10	14	2	6	5		2				
2	6	10	14	2	6	6		2				
2	6	10	14	2	6	7		2				
2	6	10	14	2	6	9		1				
2	6	10	14	2	6	10		1				
2	6	10	14	2	6	10		2				
2	6	10	14	2	6	10		2	1			
2	6	10	14	2	6	10		2	2			
2	6	10	14	2	6	10		2	3			
2	6	10	14	2	6	10		2	4			
2	6	10	14	2	6	10		2	5			
2	6	10	14	2	6	10		2	6			
2	6	10	14	2	6	10		2	6			1
2	6	10	14	2	6	10		2	6			2
2	6	10	14	2	6	10		2	6	1		2
2	6	10	14	2	6	10		2	6	2		2
2	6	10	14	2	6	10	2	2	6	1		2
2	6	10	14	2	6	10	3	2	6	1		2
2	6	10	14	2	6	10	4	2	6	1		2
2	6	10	14	2	6	10	5	2	6	1		2
2	6	10	14	2	6	10	7	2	6			2
2	6	10	14	2	6	10	7	2	6	1		2
2	6	10	14	2	6	10	8	2	6	1		2
2	6	10	14	2	6	10	10	2	6			2
2	6	10	14	2	6	10	11	2	6			2
2	6	10	14	2	6	10	12	2	6			2
2	6	10	14	2	6	10	13	2	6			2
2	6	10	14	2	6	10	14	2	6			2
2	6	10	14	2	6	10	14	2	6	1		2
2	6	10	14	2	6	10	14	2	6	2		2
2												

4.5. ЗЛЕКТРОННАЯ ROH中НГУРАПНД АТОМА ІЕРНОДМЧЕСКАЯ СМСТЕМА Д.П. МЕНДЕЛЕЕВА

Положение химического элемента в периодической системе определяется строением атома и его свойствами.

В периодах слева направо усиливаются неметаллические свойства элементов и увеличиваются значения их ОЭО ${ }^{1}$, а в главных подгруппах та же тенденция наблюдается снизу вверх.

Валентные электроны - это электроны последних энергетических уровней; они имеют максимальную энергию и принимают участие в образовании химической связи между атомами в молекулах (см. раздел 5).

В атомах элементов главных подгрупп (A) валентные электроны (в. э.) находятся на последнем (валентном) энергетическом уровне (в. у.), а в атомах элементов побочных подгрупп (В) - на последнем и предпоследнем.

$$
N_{\text {пор }}=+Z=N\left(\begin{array}{l}
1 \\
1
\end{array} p\right)=N(\bar{e})
$$

$N_{\text {пор. }}$ - порядковый номер, Z - заряд ядра, $N\left({ }_{1}^{1} p\right)$ - число протонов, $N(\bar{e})$ - число электронов.
Пример: ${ }_{14}^{28} \mathrm{Si} N_{\text {пор. }}=14, Z=+14$,
$N\left({ }_{1}^{1} p\right)=14, N\left({ }_{0}^{1} n\right)=28-14=14$ (число нейтронов)
${ }_{14} \mathrm{Si}-3$ период $\Rightarrow+14 \quad$)) $)$
${ }_{14} \mathrm{Si}$ - IV подгруппа +4))) $1 s^{2} 2 s^{2} 2 p^{6} \underbrace{3 s^{2} 3 p^{2}}_{\text {в. э. (в. у.) }}$
Максимальная степень окисления (+4) и максимальная валентность в соединениях равна IV: $\stackrel{+4}{\mathrm{Si}} \mathrm{O}_{2} ; \mathrm{NS}_{\mathrm{Si}} \mathrm{O}_{2}$ (см. раздел 4.6).

[^6]
4.6. BAJIEHTHOCTB. OCHOBHOE M BOSEYXДEHHOE COCTOGHDE ATOMA

Валентность элемента определяется числом неспаренных электронов в атоме, поскольку они принимают участие в образовании химической связи между атомами в молекулах соединений.

Основное состолние атома (состояние с минимальной энергией) характеризуется электронной конфигурацией атома, которая соответствует положению элемента в периодической системе.

Основное состояние атома хлора:

$$
{ }_{17} \mathrm{Cl} \ldots 3 s^{2} 3 p^{5}
$$

Валентность (В) хлора в основном состоянии равна единице, посколь ку атом имеет один неспаренный электрон

Возбужденное состояние атома - это его новое энергетическое состояние с новым распределением электронов в пределах валентного уровня (рис. 6-8).
${ }_{17} \mathrm{Cl} . . .3 s^{2} 3 p^{5}$

Основное состояние хлора

\ldots	$\uparrow \downarrow$

${ }_{17} \stackrel{*}{\mathrm{Cl}} . . .3 s^{2} 3 p^{4} 3 d^{1}$
 , $\mathrm{B}(\stackrel{*}{\mathrm{Cl}})=\mathrm{III}$;
${ }_{17} \stackrel{\star *}{\mathrm{C}} \ldots . .3 s^{2} 3 p^{3} 3 d^{2}$
 $\mathrm{B}(\stackrel{* *}{\mathrm{Cl}})=\mathrm{V} ;$
${ }_{17} \stackrel{* * *}{\mathrm{Cl}} . . .3 s^{1} 3 p^{3} 3 d^{3}$

Рис. 6
Основное и возбужденные состояния атома хлора

Рис. 7
Структура электронных оболочек атомов фтора и брома в основном (невозбуждевном) состоянии и в состояниях различной стешени возбуждения (у брома)

Атомы фтора, как видно из рис. 7 , не могут иметь возбужденного состояния. То же относится и к атомам кислорода и азота.

Рис. 8
Структура электронных оболочек атомов неона и ксенона в основном
(невозбужденном) состоянии и в состояниях различной степени возбуждения (у ксенона)

4.7. OHEPILTHYECXIE XAPAKTEPMCTHKM ATOMA

Энергия ионизации (I) - энергия, необходимая для шревращения нейтрального атома в положительно заряженный ион или для отрыва электрона от нейтрального атома элемента: $\underset{\text { атом }}{\boldsymbol{Э}^{0}-\overline{\boldsymbol{e}}} \rightarrow \underset{\text { ион }}{\boldsymbol{+}}$.
I измеряется в электронвольтах (эВ) на атом или килоджоулях на моль (кДж/моль);
$1 \ni \mathrm{~B}=1,60 \cdot 10^{-22} \cdot 6,02 \cdot 10^{23}=96,32$ кДж/моль.
В табл. 12 приведены энергии ионизации атомов некоторых элементов.

таблица 12
Энерги ионизации атомов некоторых элемевтов

Характеристикс процесса	Энергия ионизации, зВ				
	I_{1}	I_{2}	I_{3}	$\begin{gathered} \mu a \\ 1 \text { аmom } \end{gathered}$	на 1 эквивалент
$\mathbf{H}-\boldsymbol{e} \rightarrow \mathrm{H}^{+}$	13,59	-	-	13,59	13,59
$\mathrm{Li}-e \rightarrow \mathrm{Li}^{+}$	5,39	-	-	5,39	5,39
$\mathrm{Na}-e \rightarrow \mathrm{Na}^{+}$	5,14	-	-	5,14	5,14
$\mathbf{K}-\boldsymbol{e} \rightarrow \mathbf{K}^{+}$	4,34	-	-	4,34	4,34
$\mathbf{R b}-\boldsymbol{e} \rightarrow \mathbf{R b}^{+}$	4,17	-	-	4,17	4,17
$\mathrm{Cs}-\boldsymbol{e} \rightarrow \mathrm{Cs}^{+}$	3,89	-	-	3,89	3,89
$\mathbf{A g}-e \rightarrow \mathbf{A g}^{+}$	7,57	-	-	7,57	7,57
$\mathrm{Cu}-2 e \rightarrow \mathrm{Cu}^{2+}$	7,72	20,29	-	28,01	14,00
$\mathbf{M g}-2 e \rightarrow \mathbf{M g}^{2+}$	7,64	15,03	-	22,67	11,33
$\mathrm{Ca}-2 e \rightarrow \mathrm{Ca}^{2+}$	6,11	11,86	-	17,97	8,98
$\mathrm{Sr}-2 e^{\prime} \rightarrow \mathrm{Sr}^{2+}$	5,69	11,03	-	16,73	8,36
$\mathrm{Ba}-2 e \rightarrow \mathrm{Ba}^{2+}$	5,21	10,00	-	15,21	7,60
$\mathrm{Zn}-2 e \rightarrow \mathrm{Zn}^{2+}$	9,39	17,96	-	27,35	13,67
$\mathrm{Al}-3 \boldsymbol{e} \rightarrow \mathrm{Al}^{8+}$	5,98	18,82	28,44	53,24	17,74
$\mathrm{Sn}-2 e \rightarrow \mathrm{Sn}^{2+}$	7,34	14,62	-	22,03	11,01
$\mathrm{Pb}-2 e \rightarrow \mathrm{~Pb}^{2+}$	7,41	15,03	-	22,45	11,22
$\mathrm{Fe}-2 e \rightarrow \mathrm{Fe}^{2+}$	7,87	16,18	-	24,05	12,02

Энергия сродства к электрону (E) - энергия, выделяемая или поглощаемая при присоединении электрона к атому и превращении его в анион:

$$
Э^{0}+\bar{e} \rightarrow Э^{-} \pm E ;
$$

E измеряется в 3 В/атом, кДж/моль.
Отрицательное значение энергии сродствак электрону означает, что присоединение электрона к атому требует затраты определенной энергии.

В табл. 13 приведены значения энергии сродства к электрону атомов некоторых элементов.

таблица 13
Энергии сродства к электрону атомов некоторых элементов

Уравкение реакиии	E, эВ/атом	Уравнение реакции	Е, эВ/атам
$\mathrm{Ar}+e \rightarrow \mathrm{Ar}^{-}$	$-1,0$	$\mathrm{Li}+e \rightarrow \mathrm{Li}^{-}$	$+0,54$
$\mathrm{~B}+e \rightarrow \mathrm{~B}^{-}$	$+0,3$	$\mathrm{Mg}+e \rightarrow \mathrm{Mg}^{-}$	$-0,4$
$\mathrm{Be}+e \rightarrow \mathrm{Be}^{-}$	$-0,6$	$\mathrm{~N}+e \rightarrow \mathrm{~N}^{-}$	$-0,69$
$\mathrm{Br}+e \rightarrow \mathrm{Br}^{-}$	$+3,54$	$\mathrm{~N}+3 e \rightarrow \mathrm{~N}^{3-}$	$-23,7$
$\mathrm{C}+e \rightarrow \mathrm{C}^{-}$	$+2,08$	$\mathrm{Na}+e \rightarrow \mathrm{Na}^{-}$	$+1,21$
$\mathrm{C}+4 e \rightarrow \mathrm{C}^{+}$	$-30,7$	$\mathrm{O}+e \rightarrow \mathrm{O}^{-}$	$+2,33$
$\mathrm{Cl}+e \rightarrow \mathrm{Cl}^{-}$	$+3,82$	$\mathrm{O}+2 e \rightarrow \mathrm{O}^{2-}$	$-6,76$
$\mathrm{~F}+e \rightarrow \mathrm{~F}^{-}$	$+3,62$	$\mathrm{P}+e \rightarrow \mathrm{P}^{-}$	$+0,9$
$\mathrm{H}+e \rightarrow \mathrm{H}^{-}$	$+0,75$	$\mathrm{~S}+e \rightarrow \mathrm{~S}^{-}$	$+1,04$
$\mathrm{Hg}+e \rightarrow \mathrm{Hg}^{-}$	$+1,53$	$\mathrm{~S}+2 e \rightarrow \mathrm{~S}^{-}$	$-3,47$
$\mathrm{I}+e \rightarrow \mathrm{I}^{-}$	$+3,23$	$\mathrm{Si}+e \rightarrow \mathrm{Si}^{-}$	$+2,0$
$\mathrm{~K}+e \rightarrow \mathrm{~K}^{-}$	$+0,69$		

Как следует из табл. 12, для щелочных металлов характерны наименьшие значения энергии ионизации, и они уменьшаются в ряду $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$. Наибольшим сродством к электрону обладают p-элементы VII группы периодической системы. Для большинства металлов и благородных газов характерны малые и даже отрицательные значения энергии сродства к электрону (см. табл. 13). Количественной зависимости между величинами первого потенциала ионизации и сродства к электрону не установлено.

4.8. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ

Электроотрицательность - способность атома к приобретению отрицательного заряда при образовании химической связи (способность атома в химическом соединении притягивать к себе электроны).

Электроотрицательность (ЭО) выражается как полусумма энергии ионизации и энергии сродства к электрону:

$$
\text { ЭО }=\frac{I+E}{2} .
$$

Значения электроотрицательности элементов по Полингу приведены в табл. 14.

Для удобства на практике пользуются относительными значениями электроотрицательности (ОЭО) (табл. 15). ОЭО лития принята за единицу.

Электроотрицательность элементов

$\begin{gathered} \text { Me- } \\ \text { puod } \end{gathered}$	Гpunna								
	IA	ILA	IIIA	IVA	VA	VIA	VIIA	VIII	
I	$\underset{2,20}{\mathrm{H}}$								
II	$\begin{gathered} \mathrm{Li} \\ 0,98 \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ 1,57 \end{gathered}$							
III	$\begin{gathered} \mathrm{Na} \\ 0,93 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 1,31 \end{gathered}$							
N	$\begin{gathered} \mathrm{K} \\ 0,82 \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ 1,00 \end{gathered}$	$\begin{gathered} \mathrm{Sc} \\ 1,36 \end{gathered}$	$\begin{gathered} \mathrm{Ti} \\ 1,54 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ 1,63 \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ 1,66 \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ 1,55 \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ 1,83 \end{gathered}$	$\begin{gathered} \text { Co } \\ 1,88 \end{gathered}$
V	$\begin{gathered} \mathrm{Rb} \\ 0,82 \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ 0,95 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 1,22 \end{gathered}$	$\begin{gathered} \mathrm{Zr} \\ 1,33 \end{gathered}$	Nb	$\begin{gathered} \text { Mo } \\ 2,16 \end{gathered}$	Tc	$\mathbf{R u}$	$\begin{gathered} \mathrm{Rh} \\ 2,28 \end{gathered}$
$V 7$	$\begin{gathered} \mathrm{Cs} \\ 0,79 \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ 0,89 \end{gathered}$	$\begin{gathered} \mathrm{La} \\ 1,10 \end{gathered}$	Hf	Ta	$\begin{gathered} \mathrm{W} \\ 2,36 \end{gathered}$	Re	Os	$\begin{gathered} \mathrm{Ir} \\ 2,20 \end{gathered}$
VII	Fr	Ra	Ac						

Cs, K, Na, Ca, Mg, Al, Si, H, P, C, S, Br, Cl, N, O, F

ОЭО возрастает

В периодах ОЭО возрастает слева направо, в главных подгруппах она возрастает снизу вверх. При химических реакциях электроны смещаются ($\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$) или переходят к атомам элементов ($2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$), обладающих большей ОЭО.
Л. Полингом разработана так называемая термохимическая система, согласно которой электроотрицательность атомов A и В определяют исходя из энергий связи $\mathrm{A}-\mathrm{B}$, $\mathrm{A}-\mathrm{A}$ и В-В.

таблица 14
по Полингу

$\Gamma p y n n b$								
VIII	IB	IIB	IIIB	IVB	$V B$	VIB	VIIB	0
								He -
			$\begin{gathered} \text { B } \\ 2,04 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 2,55 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 3,44 \end{gathered}$	$\begin{gathered} 0 \\ 3,44 \end{gathered}$	$\begin{gathered} \mathbf{F} \\ 3,98 \end{gathered}$	Ne
			$\begin{gathered} \mathrm{Al} \\ 1,61 \end{gathered}$	$\begin{gathered} \mathrm{Si} \\ 1,90 \end{gathered}$	$\begin{gathered} P \\ 2,19 \end{gathered}$	$\begin{gathered} S \\ 2,58 \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ 3,16 \end{gathered}$	Ar
Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
1,91	1,90	1,65	1,81	2,01	2,18	2,55	2,96	-
Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
2,20	1,93	1,69	1,78	1,96	2,05	-	2,66	-
Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
2,28	2,54	2,00	2,04	2,33	2,02	-	-	-

Электроотрицательность атомов используется в физи-ко-химических исследованиях. Зная ЭО, можно определить, например, полярность ковалентной связи. Относительная электроотридательность может служить мерой неметалличности химических элементов: чем больше ОЭО, тем элемент сильнее проявляет неметаллические свойства. Как следует из табл. 15, у элемента азота, например ($\mathrm{O} О=3,0$) неметаллические свойства выражены в большей степени, чем у серы ($O Э О=2,5)$.

таблица 15
Отвосительная электроотрицательность атомов

I	$I I$	$I I I$	$I V$	V	$V I$	$V I I$		$V I I I$	
H									
2,1									
Li	Be	B	C	N	O	F			
1,0	1,5	2,0	2,5	3,0	3,5	4,0			
Na	Mg	Al	Si	P	S	Cl			
0,9	1,2	1,5	1,8	2,1	2,5	3,0			
K	Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni
0,8	1,0	1,3	1,3		1,6	1,6	1,6	1,7	1,8
	Zn	Ga	Ge	As	Se	Br			
	1,6	1,6	2,0	2,0	2,4	2,8			
Rb	Sr	Y	Zr	Nb			Ru	Rh	Pb
0,8	1,0	1,3	1,5	1,7			2,0	2,1	2,1
Ag	Cd	In		Sb	Te	I			
1,9	1,7	1,7		1,8	2,1	2,6			
Cs	Ba	La	Hf				Os	Ir	Pt
0,75	0,9	1,2	1,4				2,1	2,1	2,1
	Hg		Pb	Bi	Po	At			
	1,8		1,6	1,8	2,3	2,2			
Fr	Ra								
0,7	0,9								

Таким образом, ОЭО определяет полярность связи, которую атом данного элемента может образовать с атомами других элементов.

4.9. ХАРАКТЕРИСТИKR ЗЛEMEHTA ПО ЕГО ПОЛОЖЕНИН В ПЕРНОДИЧЕСКОА С CHCTEME (ПС)

План характеристики

1. Положение элемента в ПС (порядковый номер, период, группа, подгруппа).
2. Строение атома (заряд ядра (Z) и его состав) - число протонов $N\left({ }_{1}^{1} p\right)$, нейтронов $N\left({ }_{0}^{1} n\right)$, электронов $N(\bar{e})$ в атоме; структура электронной оболочки атома, электронная формула (конфигурация) валентных уровней (в.у.), валентность в основном и возбужденных состояниях.
3. Тип элемента ($s-, p-, d-, f$ - элемент), (металл, неметалл), формула высшего оксида и соответствующего ему гидроксида; уравнения реакций, которые доказывают характер оксида и гидроксида (основной, кислотный или амфотерный).

Пример 1
Дать характеристику элементов № 56 и № 16 по их положению в ПС.

1. Элемент № 56 - барий ${ }_{56} \mathrm{Ba}$, период 6, группа II, главная подгруппа.
2. $Z=+56, N\left({ }_{1}^{1} p\right)=56 ; N(\bar{e})=56$,

$$
N\left({ }_{0}^{1} n\right)=A-N\left({ }_{1}^{1} p\right)=137-56=81
$$

Электронная формула:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} \frac{6 s^{2}}{\text { B.y. }}
$$

${ }_{56} \mathrm{Ba} . . .6 s^{2} 6 p^{0}$ - основное состояние атома

3. Варий - s-элемент, металл. Высший оксид BaO основной оксид, $\mathrm{Ba}(\mathrm{OH})_{2}$ - основание (щелочь).

Основной характер BaO и $\mathrm{Ba}(\mathrm{OH})_{2}$ можно доказать следующими реакциями:

$$
\begin{gathered}
\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}, \\
\mathrm{BaO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\
\mathrm{BaO}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}, \\
\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl}^{2} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\
\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}, \\
\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{KOH}
\end{gathered}
$$

Пример 2

1. Элемент № 16 - сера ${ }_{16} \mathrm{~S}$, период 3 , группа VI, главная подгруппа.
2. $Z=+16, N\left({ }_{1}^{1} p\right)=16, N(\bar{e})=16 ;$

$$
N\left({ }_{0}^{1} n\right)=32-16=16 .
$$

Электронная формула: $1 s^{2} 2 s^{2} 2 p^{6} \frac{3 s^{2} 3 p^{4}}{\text { в. у. }}$

$$
{ }_{16} \mathrm{~S} . . .3 s^{2} 3 p^{4} 3 d^{0}
$$

- 2-е возбужденное состояние атома, $\mathbf{B}\left(\mathbf{S}^{* *}\right)=$ VI

[^7]3. Сера - p-элемент, неметалл. Сера имеет переменную валентность: II, IV, VI. Высший оксид SO_{3} - кислотный оксид (ангидрид), $\mathrm{H}_{2} \mathrm{SO}_{4}$ - кислота. Кислотный характер высшего оксида SO_{3} и его гидрата $\mathrm{H}_{2} \mathrm{SO}_{4}$ можно доказать следующими реакциями:
\[

$$
\begin{gathered}
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \\
\mathrm{SO}_{3}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\
\mathrm{SO}_{3}+\mathrm{BaO} \rightarrow \mathrm{BaSO}_{4}, \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Mn} \rightarrow \mathrm{MnSO}_{4}+\mathrm{H}_{2}, \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CuO} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{HCl}
\end{gathered}
$$
\]

Приведенные характеристики конкретных элементов - бария (№ 56) и серы (№ 16) показывают, что элемент барий является типичным металлом, а его высший оксид BaO и соответствующий ему гидроксид $\mathrm{Ba}(\mathrm{OH})_{2}$ проявляют свойства типичных основного оксида и основания. Элемент сера - это типичный неметалл, а его высший оксид SO_{3} и соответствующая ему кислота $\mathrm{H}_{2} \mathrm{SO}_{4}$ проявляют свойства типичных кислотного оксида (ангидрида) и кислоты. Таким образом, давая характеристику элементу по его положению в периодической системе, можно в определенной мере предсказать свойства пеизвестных элементов, стоящих по соседству с ними, - как в группе, так и в периоде, как это сделал Д. И. Менделеев, предсказав свойства галлия, скандия и германия еще в 1869 году, аоткрыты они были в 1875,1879 и 1886 годах соответственно (см. раздел 3.1).

5. XIMMYECRAタ CBS3B M CTPOEHIE BEHECTBA

Химическая связь -- это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, радикалы, кристаллы.

Химическая связь, осуществляемая общими электронными парами, называется ковалентной.

Рис. 9
Зависимость потенциальной энергии (E) от расстояния между ядрами (r) для молекулы H_{2}

Как видно из рис. 9 , минимум на кривой 1 соответствует энергии связи в молекуле \mathbf{H}_{2} (это максимальная энергия, выделяемая при образовании молекулы H_{2}, спины антипараллельны $\uparrow \downarrow$). Если спины параллельны (в одном направлении $\uparrow \uparrow$) (кривая 2), то потенциальная энергия системы из двух атомов непрерывно возрастает при их сближении, и, следовательно, химическая связь не образуется.

5.1. ROBAIEHTHAR EEDOתAPHAA CBЯ3B

Осуществляется общей электронной парой, образующей симметричное электронное облако. Этот вид связи возникает между атомами с одинаковой электроотридательностью: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{C}, \mathrm{P}, \mathrm{As}, \mathrm{PH}_{3}, \mathrm{CS}_{2}$ (табл. 16).

Пример образования молекулы F_{2} из атомов:

$$
: \ddot{\mathrm{F}}+\cdot \ddot{\mathrm{F}}: \rightarrow \underset{\cdot}{\ddot{F}} \ddot{\mathrm{~F}}:
$$

По характеру перекрывания электронных облаков различают σ - и π-связи: при σ-связи происходит однократное перекрывание облаков p на линии, соединяющей центры атомов (рис. 10), а при π-связи - двукратное перекрывание электронных облаков по обе стороны от линии, соединяющей центры атомов (рис. 11). На рис. 12 и 13 показано схематическое изображение σ - и π-связей в молекулах кислорода и азота.

Примеры образования σ-связей

Рис. 11
Примеры образования π-связей

В молекуле кислорода O_{2} одна σ-связь и одна π-связь, а в молекуле азота одна σ-связь и две π-связи.

Две р-р-связи $\underset{\text { Рис. } 12}{\text { (} \sigma \cdot и \text {-связв)в молекуле кислорода }}$

$\mathrm{N}_{\pi}^{\mathbb{d}}=\mathrm{N}$

$$
\mathrm{N}=\underset{\text { связь }}{\mathrm{N}}-\text { тройная }
$$

Phc. 13
Схематическое изображение σ - и π-связей в молекуле азота

таблица 16 Параметры ковалентной неполярной связи в молекулах $\mathbf{H}_{\mathbf{2}}, \mathrm{F}_{\mathbf{2}}, \mathrm{O}_{\mathbf{2}}, \mathbf{N}_{\mathbf{2}}$

Молекула	Саязь	Кратность связи	Длина сяязи, нм	Энергия связи, кДж/моль
H_{2}	$\mathbf{H - H}$	1	0,074	436
$\mathrm{~F}_{2}$	$\mathbf{F}-\mathbf{F}$	1	0,142	139
O_{2}	$\mathbf{0}=\mathbf{0}$	2	0,121	494
$\mathrm{~N}_{2}$	$\mathbf{N} \equiv \mathbf{N}$	3	0,109	945

5.2. кОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗБ

Образуется между атомами с различной электроотрицательностью (как правило, между атомами различных неметаллов): $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$ и др.

ОЭО $(\mathrm{H})=2,1,0 Э О(\mathrm{Cl})=3,0.0 Э О(\mathrm{Cl})>О Э О(\mathrm{H})$, поэтому общая электронная пара смещена в сторону хлора (показано стрелкой).

Схема образования ковалентной полярной связи в молекулах некоторых соединений показана на рис. 14,

а характер ковалентной связи - в табл. 17.

Рнс. 14
Образование ковалентной полярной связи в молекулах $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$

Таблица 17
Характер ковалентной свлзи в галогеноводородах

Молекула	Электронная формула	\triangle ОЭО	Характер ковалентной связи
H_{2}	H: H	$\triangle \mathrm{OFO}(\mathrm{H}-\mathrm{H})=0$	Неполярная
I_{2}	I:I	\triangle OЭО (I-I) $=0$	Неполярная
HI	$\mathrm{H}: \mathrm{I}$:	\triangle ОЭО(H-I) $=0,5$	Слабополярная
HBr	$\mathrm{H}: \ddot{\mathrm{Br}}$:	\triangle OЭО($\mathrm{H}-\mathrm{Br})=0,7$	Среднеполярная
HCl	H: Cl l :	$\triangle \mathrm{O} \mathrm{O}(\mathrm{H}-\mathrm{Cl})=0,9$	
HF	$\mathrm{H}: \stackrel{\mathrm{F}}{\mathrm{F}}$:	$\triangle \mathrm{O} O(\mathrm{H}-\mathrm{F})=1,9$	Сильнополярная

5.3. OBPA30BAHIE ROBAJEHTHOL CBA3M IO ДОНОРНО-AKLEITTOPHOMY MEXAHM 3 MY

$$
\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4}^{+} \mathrm{Cl}^{-}
$$

Образование иона NH_{4}^{+}можно показать схемой:

Ион $\mathrm{H}^{+} \rightarrow \underset{1 s}{\square} \rightarrow$ свободная орбиталь

Атом \mathbf{N} - донор (предоставляет неподеленную пару электронов \odot), ион \mathbf{H}^{+}- акцептор (предоставляет свободную орбиталь \square).

Образованную по указанному механизму ковалентную связь часто называют донорно-акцепторной, или координационной, связью, хотя это название отражает лишь механизм связи, но не ее свойства.

5.4. HOHLAA CBM3B

Образуется в результате электростатического притяжения противоположно заряженных ионов.

(образуется ионная решетка)
Na^{+}- катион, $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}, \mathrm{F}^{-}, \mathrm{S}^{2-}$ - простые ионы, F^{-}- анион, $\mathrm{NH}_{4}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{PO}_{4}^{3-}$ - сложные ионы.

Металлы главных подгрупп I и II групп с неметаллами главных подгрупп VI и VII групп периодической системы образуют наиболее типичные ионные соединения: NaF , $\mathrm{K}_{2} \mathrm{O}, \mathrm{BaO}, \mathrm{Rb}_{2} \mathrm{~S}, \mathrm{LiCl}, \mathrm{CaF}_{2}$ и др.

Как видно из приведенной ранее схемы, ионную связь можно рассматривать как предельный случай ковалентной полярной связи, при которой общая электронная пара прктически полностью смещена к одному из атомов. Мерой ионной связи в соединении служит разность между электроотрицательностями атомов элементов, образующих данное соединение. В ионном соединении ионы можно представить в виде электрических зарядов со сферической симметрией силового поля. Такие заряды могут притягивать к себе неограниченное число зарядов (ионов) противоположного знака. Поэтому основным отличием ионной связи от ковалентной является ее ненаправленность и ненасыщенность.

5.5. водОРоДНАЯ СвяЗБ

Водородная связь возникает между атомом водорода и другим более электроотрицательным атомом за счет сил электростатического притяжения по донорноакцепторному механизму:

Схема межмолекулярной водородной связи:
1 - в молекулах воды; 2 - в молекулах аммиака (вжидком состоянии).

Энергия водородной связи составляет порядка десятков килоджоулей на моль.

Существует и внутримолекулярная водороная связь (например, в силициловом альдегиде):

5.6. МЕТАЛЛНЧЕСхАЯ СВяЗЬ

Металлическая связь - это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании металлической связи участвуют валентные электроны металла, принадлежащие всему объему металла. В металле от атомов постолнно отрываются электроны, которые перемещаются по всей массе металла, как это показано на рис. 15. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые снова стремятся притянуть к себе движущиеся электроны. Одновременно с этим другие атомы металла отдают свои электроны, и, таким образом, внутри металла постоянно циркулирует «электронный газ», который прочно связывает между собой все атомы металла.

Рис. 15
Схема образования металлической связи
\bigcirc - атомы металла;
\oplus - новы металла;
$\overline{\text { е }}$ - пэлектронный газ».
Для металлической связи характерно отсутствие направленности, обусловливающей пластичность металлов.

Возбуждение атома приводит, как правило, к образованию «гибридных» орбиталей. Гибридизация орбиталей это математическое описание явления, заключающегося в выравнивании энергий нескольких электронных подуровней и образовании за счет этого из всех различных участвующих в гибридизации обриталей равного числа одинаковых гибридных орбиталей.

Например, атом Ве в возбужденном состоянии имеет две орбитали - s и p, обладающие разными энергиями. При образовании химических связей энергии усредняются, и новые «гибридные» орбитали имеют вид, показанный на рис. 16.

Представление о гибридизации атомных орбиталей было введено в химию Л. Полингом.

Рис. 16
Гибридизация орбиталей атома Be

Согласно концепции гибридизации атомных валентных орбиталей, в образовании ковалентных связей участвуют не «чистые» орбитали, а так называемые гибридные, усредненные по форме и размерам орбитали. Химическая связь, образуемая с участием электронов гибридных орбиталей, более прочная, чем связь с участием чистых s - и p-орбиталей, так как происходит большее перекрывание электронных облаков.

Схемы и некоторые типы гибридизации показаны на рис. 17,18 и в табл. 18.

При образовании химической связи в молекуле BCl_{3} у атома бора (электронная структура в возбужденном состоянии $1 s^{2} 2 s^{1} 2 p^{2}$) в гибридизации участвуют орбитали одного s - и двух p-электронов (осуществляется $s p^{2}$-гибридизация орбиталей центрального атома). Это приводит к образованию трех гибридных орбиталей под углом 120° (рис. 17).

В молекуле метана CH_{4} при образовании связи атом углерода в возбужденном состоянии ($1 s^{2} 2 s^{2} 2 p^{2} \rightarrow 1 s^{2} 2 s^{1} 2 p^{3}$) может присоединять четыре атома водорода. При этом у атома углерода подвергаются гибридизации орбитали одного s - и трех p-электронов, - осуществляется $s p^{3}$-гибридизация. Угол между осями гибридных орбиталей составляет $109^{\circ} 28^{\prime}$. Перекрыванием четырех гибридных $s p^{3}$-орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется прочная молекула метана с четырьмя одинаковыми связями (рис. 17 и 18).

Рис. 17
Схемя гнбридизации при образовании химической связи в молекулах $\mathrm{BeCl}_{2}, \mathrm{Bcl}_{3}$ и CH_{4}

Типы гибридизации

Tип молекульь	Tип гибридизации	Геометрическал форма
AB_{2}	$s p$	Линейная
	p^{2}	Изогнутая
	$s p^{2}, d^{2} s$	Тригональная
	$p^{3}, p d^{2}$	Пирамидальная
AB_{4}	$s p^{3}, d^{3} s$	Тетрагональная
	$d s p^{2}$	Квадратичная
AB_{5}	$s p^{3} d$	Бипирамидальная
AB_{8}	$d^{2} s p^{3}$,	Октаадрическая
AB_{8}	$s p^{3} d^{4}$	Кубическая

Рис. 18
Некоторые типы гибридизации валентных орбиталей a - исходные орбитали; б - гибридные орбитали

5.8. ПOH:ATMA BAJEHTHOCTHM CTEMEHM OKHCJEHA B CBETE TEOPHM CTPOEHLA BEMECTBA

Валентность - это способность химического элемента образовывать химические связи.

Чаще всего валентность атома определяется числом его неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов.

Степень окисления - условный заряд атома в соединении, если считать, что соединение состоит из ионов.

Численные значения валентности и степени окисления в соединениях могут как совпадать, так иотличаться друг от друга (табл. 19 и 20).

таблица 19
Валентность и степень окисления атомов
в веществах $\mathbf{H}_{2}, \mathbf{O}_{\mathbf{2}}, \mathbf{N}_{\mathbf{2}}, \mathrm{NH}_{8}, \mathbf{N}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$

Химическая формула и название вецества	Графическая формула	Валентность атома	Степень окисления атома
H_{2} - водород	$\mathrm{H}-\mathrm{H}$	I	0
O_{2} - кислород	$0=0$	II	0
F_{2} - фтор	$F-F$	I	0
N_{2} - ${ }^{\text {a30 }}$	$\mathrm{N} \equiv \mathrm{N}$	III	0
NH_{9} - аммиак		III	-3
$\mathrm{N}_{2} \mathrm{H}_{4}$ - гидразин		III	-2

Валентность и степень окисления атома углерода в различвых соединениях

Химическая формула и название соединения	Графическая формула	Валентность атама C	Степень окисления атама C
$\mathrm{CO}_{2}-\text { оксид }$ углерода (IV)	$\mathrm{O}=\mathrm{C}=0$	IV	+4
CH_{4} - метан		IV	-4
$\mathrm{CH}_{2} \mathrm{O}$ муравьиный альдегид		IV	0
$\underset{\substack{\text { метиловый } \\ \text { спирт }}}{\mathrm{CH}_{3} \mathrm{OH}-}$		IV	-2
HCOOH муравьиная кислота	$\mathrm{H}-\mathrm{C}^{=} \begin{aligned} & \mathrm{O} \\ & \mathrm{O}-\mathrm{H} \end{aligned}$	IV	+2

Численное знячение высшей степени окисления атома элемента равно номеру группы, в которой находится элемент в периодической системе Д. И. Менделеева. Понятие валентности более применимо к органическим соединениям, а понятиестепени окисления чаще всего используется при изучении свойств неорганических соединений. В неорганической химии понятие валентности применяют, чтобы показать способность данного элемента к образованию определенного числа химических связей.

5.9. AГPETATHOE COCTOAHLE BEMECTBA. крНСТАлЛЫ. THIH RPHCTAЛЛIYECKMX PEDETOR

Вещества могут находиться в газообразном, жидком и твердом состоянии или в виде плазмы (табл. 21).

таблица 21
Агрегатное состояние вещества

Газообразное состояние	
В газах молекулы находятся на значительном удалении друг от друга, и поэтому газовое состояние характеризуется самыми ма лыми силами межмолекулярного взаимодействия по сравнению с жидким и твердым состояниями. Газ принимает объем и форму сосуда, в котором он находится	
Жидкое состоянне	
В жидкости силы межмолекулярного взаимодействия болњше, чем в газах, но еще недостаточны для сохранения объема и формы Для жидкости характерны: ближний порядок, изотропия своиств, текучесть	
Твердое состояние	
кристаллическое	аморфное
В твердом веществе частицы находятся на очень близком расстоянии друг от друга, и силы взаимодействия между ними настолько велики, что твердые вещества имеют определенные форму и объем	
Для кристаллического состояния характерны: дальний порядок, анизотропия свойств, кристаллическая (упорядоченная) структура, определенная температура плавления	Для аморфного состояния характерны: ближний порядок, изотропия свойств, отсутствие кристаллической (упорядоченной) структуры, отсутствие определенной температуры плавления
Плазменное состояние	
Ионизированный газ, в которо ных и отрищательных электр характерно для космическою	бъемные шлотности положительеских зарядов равны. Наиболее странства

Кристаллы - это физические тела, частицы которых образуют кристаллическую решетку, обладают симметрией атомной структуры и анизотропией некоторых физических свойств.

В зависимости от природы частиц кристалла различают ионные, атомные, молекулярные и металлические решетки (рис. 19).

Prc. 19
Типы кристаллических решеток (схема)
A, B - молекулярные неполярвая и полярная решетки; В, Г, Д - атомная, металлическая и ионная решетки

Кристаллические решетки, имеющие конечный размер, описываются с помощью трех кристаллографических осей a, b, c, располагающихся под углами α, β и γ, отличными от 90°. Кристаллическая решетка построена из периодически повторяющихся одинаковых структурных единиц, называемых элементарными ячейками.

Сингония («сходноугольность») кристаллической решетки характеризуется углами α, β и γ, под которыми располагаются кристаллографические оси a, b и c. По этому принципу различают семь видов сингоний (табл. 22) и четырнадцать типов элементарных ячеек (рис.20).

Важной характеристикой кристаллических веществ является координационное число, определяемое в кристаллохимии как число ближайших соседних частиц, которые вплотную примыкают к данной частице в кристалле или в отдельной молекуле. Например, в решетке NaCl координационные числа ионов Na^{+}и Cl^{-}равны 6, поэтому кристалл NaCl - это гигантский кристалл, состоящий из одинакового числа Na^{+}и Cl^{-}.

Характеристики элементарных ячеек

Сингония	Угол между осями	$\begin{aligned} & \text { Длина } \\ & \text { ребра } \end{aligned}$	Форма	$\begin{array}{\|c} \hline \text { No нa } \\ \text { puc. } 20 \end{array}$
Кубическая	$\begin{gathered} \alpha=\beta=\gamma=90^{\circ} \\ \alpha=\beta=\gamma=90^{\circ} \\ \alpha=\beta=\gamma=90^{\circ} \end{gathered}$	$\begin{aligned} & a=b=c \\ & a=b=c \\ & a=b=c \end{aligned}$	Куб Объемноцетрированный куб Гранецентрированный куб	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$
Тетрагональная	$\alpha=\beta=\gamma=90^{\circ}$ $\alpha=\beta=\gamma=90^{\circ}$	$a=b \neq c$ $a=b \neq c$	Призма на квадратном основании Объемноцентрированная призма на квадратном основании	4 5
Гексагональная	$\begin{gathered} \alpha=\beta=90^{\circ}, \\ \gamma=120^{\circ} \end{gathered}$	$a \neq b \neq c$	Правильная шестиугольная призма	6
Ромбическая (орторомбическая)	$\begin{aligned} & \alpha=\beta=\gamma=90^{\circ} \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$a \neq b \neq c$ $a \neq b \neq c$	Прямоутольный параллелешипед Объемноцентрированнвпй прямоутольный параллелепипед	7 8
	$\alpha=\beta=\gamma=90^{\circ}$	$a \neq b \neq c$	Базоцентрированный прямоугольный параллелепипед	9
	$\alpha=\beta=\gamma=90^{\circ}$	$a \neq b \neq c$	Гранецентрированный прямоугольный параллелепипед	10
Ромбоэдрическая (тригональная)	$\alpha=\beta=\gamma \neq 90^{\circ}$	$a=b=c$	Ромбоэдр	11
Моноклинная	$\begin{gathered} \alpha=\beta=90^{\circ}, \\ \gamma \neq 90^{\circ} \\ \alpha=\beta=90^{\circ}, \\ \gamma \neq 90^{\circ} \end{gathered}$	$a \neq b \neq c$ $a \neq b \neq c$	Прямой параллелепипед Базоцентрированный прямоуголыный параллелепипед	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
Триклинная	$\alpha \neq \beta \neq \gamma$	$a \neq b \neq c$	Произвольный параллелепипед	14

Puc. 20
Основные типы элементарных ячеек (решетки Браве)
1-3- кубические; 4,5 - тетрагональные; 6 - гексагональная;
7-10 - ромбические; 11 - ромбоэдрическая; 12,13 - моноклинные; 14 - триклинная

6. XHMLHECKME PEAKLHM M ЗAKOHOMEPHOCTM MX MPOTEKAHHK

Классификация основных типов химических реакций приведена на с. 23.

По выделению или поглощению энергии химические реакции делят на экзотермические, идущие с выделением теплоты в окружающую среду ($+Q$), и эндотермические, идущие с поглощением теплоты из окружающей среды (-Q).

6.1 ЭНТАЛЬПНЯ. СТАНДАРТНАЯ ОНТАЛЬПНЯ 0БРАЗОВАНПЯ ВЕЩЕСТВА

Энтальпия является функцией состояния системы: $\Delta H=H_{2}-H_{1}$, где ΔH - энтальпия химической реакции, H_{2} и H_{1} - суммарные энтальпии реагевтов и продуктов реакции соответственно.

$$
\Delta H_{\mathrm{p}}=-Q_{\mathrm{p}}
$$

Q_{p} - тепловой эффект реакции при постоянном давлении со знаком «-».

При $Q_{\mathrm{p}}>0$ и $\Delta H_{\mathrm{p}}<0$ идут экзотермические реакции, при $Q_{p}<0$ и $\Delta H_{p}>0$ - эндотермические.

Изменение энтальпии (тепловой эффект) химической реакции зависит от температуры, давления, количества и агрегатного состояния вещества. Поэтому договорились приводить его для стандартных условий ($T=298 \mathrm{~K}$ и $P=1,013 \cdot 10^{5}$ Па). В этом случае тепловой эффект реакции принято обозначать $\Delta \mathrm{H}_{288}^{0}$, или $\Delta \mathrm{H}^{0}$.

$$
\begin{gathered}
\text { Например, } 2 \mathrm{H}_{2} \text { (газ) }+\mathrm{O}_{2}(\text { газ })=2 \mathrm{H}_{2} \mathrm{O} \text { (жидк.), } \\
\Delta H^{0}=-571,6 \text { кДж. }
\end{gathered}
$$

$\Delta H_{\text {обр }}^{0}$ простого вещества принята равной нулю и приписывается только одному агрегатному состоянию вещества $\left(\Delta H_{\text {oбр }}^{0}\left(\mathrm{I}_{2}(\right.\right.$ тв. $\left.)\right)=0, \Delta H_{\text {обр }}^{0}\left(\mathrm{I}_{2}(ж и д к).\right)=22$ Дж/моль, $\Delta H_{\text {обр }}^{0}$ $\left(\mathrm{I}_{2}\right.$ (газ)) $=62$ кДж/моль).

По мере увеличения по абсолютной величине отрицательного значения $\Delta H_{06 \mathrm{p}}^{0}$ возрастает и устойчивость образующегося вещества.

6.2. ВЫपूСЛЕННЕ TERJOBbIX 3ФФЕKTOB

Тепловые эффекты (изменения энтальпий) реакций могут быть рассчитаны по энтальпиям образования исходных веществ (реагентов) и продуктов взаимодействия на основе закона Гесса.

Закон Гесса

Тепловой эффект (изменение энтальпии) реакции при $V=$ const или $P=$ const не зависит от числа промежуточных стадий, от пути процесса и определяется только начальным и конечным состоянием системы.

$$
\Delta H^{0}=\Delta H_{1}^{0}+\Delta H_{2}^{0}
$$

I. $\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}$
II. $\mathrm{C}+{ }^{1 / 2} \mathrm{O}_{2}=\mathrm{CO}$
III. $\mathrm{CO}+{ }^{1} /{ }_{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$

$$
\begin{aligned}
& \Delta \mathbf{H}^{0}=-393,5 \text { кДж/моль } \Delta \mathbf{H}_{1}^{0} \\
& \Delta \mathbf{H}_{1}^{0}=-110,5 \text { кДж/моль } \\
& \Delta \mathbf{H}^{0}{ }_{2}=-283 \text { кДж/моль } \\
& \hline-\mathbf{3 9 3 , 5}=-110,5-283
\end{aligned}
$$

Энтальпийные диаграммь - графическое изображение изменений энтальпии в определенных химических процессах (рис. 21). Верхний уровень на диаграмме для экзотермических реакций называется исходным уровнем, он соответствует значению $H^{0}=0$ и условно изображает простые вещества в их стандартных состояниях. Для эндотермических реакций исходный уровень расположен в нижней части диаграммы.

Рис. 21
Энтальпийная диаграмма образования CO_{2}

Следствие из закона Гесса

Тепловой эффект (изменение энтальпии) реакции ΔH_{v}^{0} равен разности между суммой энтальпий образования продуктов реакции и суммой энтальтий образования реагентов с учетом стехиометрических коэффициентов:

$$
\Delta H_{\mathrm{p}}^{0}=\sum H^{0} \text { (продукты) }-\sum H^{0}(\text { реагенты }) .
$$

Примеры: а) $4 \mathrm{NH}_{3}$ (газ) $+5 \mathrm{O}_{2}$ (газ) $=4 \mathrm{NO}$ (газ) $+6 \mathrm{H}_{2} \mathrm{O}$ (газ)

n, моль	4	5	4	6
\mathbf{H}_{298}^{0}, , ${ }^{\text {\% }}$ /\%оль	-46	0	+91	-242
$\begin{gathered} \Delta H_{\mathrm{p}}^{0}=[4(+91)+6(-242)]-[4(-46)+0]=-904 \text { кДж/моль. } \\ \text { б) } 3 \mathrm{CaO}(\mathrm{~TB})+\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~TB})=\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{Tв}) \end{gathered}$				
n, моль	3	1	1	
	3.635,50	1489,5	4112,9	
$\Delta H_{\mathrm{p}}^{0}=4112,9-(635,5 \cdot 3+1489,5)=-716,9$ кДж/моль				
в) CO (газ) $+\mathrm{H}_{2} \mathrm{O}$ (газ) $=\mathrm{CO}_{2}$ (газ) $+\mathrm{H}_{2}{ }^{*}$ (газ)				
n, моль	1	1	1	1
$\Delta H_{\mathrm{p}}^{0}=393,51-(110,50+241,82)=41,19$ кДж/моль.				

Теплоты образования некоторых химических соединений**, кДж/моль:

CaO (тв) - 635,$5 ; \quad \mathrm{CO}(\mathrm{r})-110,50 ; \quad \mathrm{CaCl}_{2}$ (тв) - 795,0;
$\left.\mathrm{P}_{2} \mathrm{O}_{\mathrm{s}}(\mathrm{TB})-1489,5 ; \quad \mathrm{CO}_{2}(\mathrm{r})-393,51 ; \mathrm{CaCO}_{(1 \mathrm{~TB}}\right)-1206,9 ;$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~TB})-4112,9 ; \mathrm{H}_{2} \mathrm{O}(\mathrm{r})-241,82 ; \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~TB})-986,6$.
Измерением теплового эффекта химических реакций и установлением его зависимости от различных физикохимических параметров занимается наука термохимия. Обычно тепловые эффекты реакции измерлют методами калориметрии при постоянном объеме или давлении. Калориметрия - это совокупность методов измерения количества теплоты, которая выделяется или поглощается в каком-либо процессе.

[^8]
6.3. ЭНТРОПНЯ

Энтропия является функцией состояния системы, отражающей меру ее неупорядоченности. В статистической термодинамике энтропия (S) пропорциональна натуральному логарифму термодинамической вероятности (W) данной системы: $S=k \ln W$, где k - константа Вольцмана; $\Delta S=S_{2}-S_{1}$, где S_{1} и S_{2} - энтропия начального и конечного состояния системы, ΔS - изменение энтропии.

В системе, где нет обмена энергией или веществом между системой и окружающей средой, возможны только такие самопроизвольные процессы, которые приводят к увеличению энтропии ($\Delta S>0$).

Наименьшую энтропию имеют идеальные правильно построенные кристаллы при абсолютном нуле (они имеют нулевую энтропию). Энтропия возрастает с повышением температуры, при превращении кристаллического вещества в жидкое состояние и особенно сильно возрастает при переходе из жидкого состояния в газообразное.

Процессы, для которых $\Delta S>0$: а) расширение газов; б) фазовые превращения (твердое \rightarrow жидкое \rightarrow газообразное состояние); в) растворение кристаллических веществ.

Процессы, для которых $\Delta S<0$: а) сжижение газов; б) увеличение концентрации и кристаллизация веществ.

Стандартная энтропия чистых веществ относится к 1 молю вещества при $P=1,013 \cdot 10^{5}$ Па и $T=298 \mathrm{~K}$ и обозначается \mathbf{S}_{298}^{0} [Дж/(К•моль)].

При $T=\mathrm{const}$

$$
\Delta G=\Delta H-T \cdot \Delta S
$$

ΔG - изменение энергии Гиббса; ΔH - изменение энтальпии; T - температура, К.

Самопроизвольные химические процессы идут в направлении уменьшения энергии Гиббса: $\Delta \mathrm{G}<0$.
ΔG^{0} - стандартное изменение энергии Гиббса, когда реакция идет при стандартных условиях ($T=298 \mathrm{~K}$ и $P=1,013 \cdot 10^{5} \Pi$ а).

$$
\Delta G^{0}=\Delta H^{0}-T \cdot \Delta S^{0}
$$

ΔH^{0} и ΔS^{0} - стандартные изменения энтальпии и энтропии.

Знак G указывает на возможность протекания реакции.
Если $\Delta G<0$, то при большой абсолютной величине ΔG равновесие сдвинуто в сторону образования продуктов реакции.

Если $\Delta G>0$, то при большой абсолютной величине ΔG равновесие сдвинуто в сторону образования реагентов.

Если $\Delta G=0$, система находится в состоянии динамического равновесия.

В ряду соединений одного типа чем меньше стандартная энтальпия образования соединений, тем больше его термодинамическая устойчивость относительно разложения на более простые вещества:

Соединения	ΔH_{298}^{0},	G_{298}^{0}	
	ж/моль	кДж/моль	
ZnO	-350	-321	Термодинамическая
CdO	-260	-229	укеньшается
HgO	-91	-58	om ZnO к HgO

Из уравнения $\Delta G=\Delta H-T \cdot \Delta S$ следует, что изменение изобарного потенциала отражает влияние на направление протекания процесса как энтальпийного ΔH, так и энтропийного $T \cdot \Delta S$ факторов. Поэтому в зависимости от температуры влияние одного из них на величину и знак ΔG, а следовательно, и на направление процесса может быть предпочтительным (определяющим) (табл. 23).

таблица 23
Направление протекания реакций в зависимости от знаков $\Delta H, \Delta S, \Delta G$

Знаки			Возможность самопроизвольного протекания реакции	Примерь
$\Delta \mathrm{H}$	ΔS	$\Delta \mathrm{G}$		
-	+	-	При любой температуре	$\begin{gathered} 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\text { жидк.) }+15 \mathrm{O}_{2}\right. \text { (газ) } \\ =12 \mathrm{CO}_{2}(\text { газ })+6 \mathrm{H}_{2} \mathrm{O}(\text { газ }) \end{gathered}$
+	-	+	Термодинамически невозможна. Moжет идти в обратном направлении	N_{2} (газ) $+2 \mathrm{O}_{2}=2 \mathrm{NO}_{2}$ (газ)
-	-	\pm	При низких температурах	$\mathrm{N}_{2}\left(\right.$ газ) $+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}$ (газ)
+	+	\pm	При высоких температурах	$\mathrm{N}_{2} \mathrm{O}_{4}($ газ $)=2 \mathrm{NO}_{2}($ газ $)$

6.5. CROPOCTb XMMMYECKILX PEAKLII

Скорость химической реакции - это отношение изменения концентрации, или доли реагента, или продукта химической реакции к интервалу времени, в течение которого произошло это изменение.

C_{1} и C_{2} - начальная (время t_{1}) и конечная (время t_{2}) концентрации реагирующего вещества.

Характер изменения концентрации реагентов и продуктов реакции в зависимости от времени при постоянном объеме показан на рис. 22.

Рис. 22
Изменение концентрации реагента $\left(\mathrm{H}_{2}\right)$ и продукта реакции $\left(\mathrm{H}_{1}\right)$ от времени $t(\mathrm{~V}=\mathrm{const})$

Средняя и мгновенвая скорости химической реакции

Средняя скорость,	Меновенная скорость, v_{t}	Примечание
$\mathrm{v}_{\mathrm{cp}}= \pm \frac{C_{2}-C_{1}}{t_{2}-t_{1}}= \pm \frac{\Delta C}{\Delta t}$ C_{1} и C_{2} - молярные концентрации любого участника реакции в момент времени t_{1} и t_{2} соответственно	$v_{t}= \pm \frac{d C}{d t}$ может бнть определена как тантенс угла наклона кривой $C=f(t)$ в данной точке (рис. 23)	Знак « \rightarrow относится к концентрации исходных веществ, $\Delta C<0$, знак «+» к концентрации продуктов реакции, $\Delta C>0$

Рис. 23
Графическое определение мгновенной скорости реакции
t_{1} - момент времени, для которого определяется мгновенная скорость реакции; В - точка на кривой зависимости кондентрации продукта

Различают среднюю и мгновенную скорости химических реакций (табл. 24). Мгновенная скорость может быть определена графически (см. рис. 23).

Факторы, влияющие на скорость химических реакций, приведены в табл. 25.

Факторы, влияюицие на скорость хнмических реакций

Bemeства	Реакция	Характер влияния
1. Природа реагирующего вещества		
F_{2}	$\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}$	Реакция ицет быстро (со взрывом) при комнатной температуре
Br_{2}	$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$	Реакция идет медленно даже при нагревании
CaO	$\begin{aligned} & \mathrm{CaO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow \end{aligned}$	Реакция идет при комнатной температуре
CuO	$\mathrm{CuO}+\mathrm{H}_{2} \mathrm{O} \rightarrow$	Реакция не идет
2. Концентрация реагирующих веществ		
A, B	$m \mathrm{~A}+n \mathbf{B} \rightarrow \mathrm{C}$ m и n - козффициенты в уравнении реакции	Выражается законом действующих масс: «скорость элементарной химической реакции при данной температуре прямо пропорџиональна произведению концентраций реагирующих веществ в степенях с показателями, равными стехиометрическим коэффициентам в уравнении реакции». Для реакции $m \mathrm{~A}+n \mathrm{~B}=\mathrm{C} \quad v=k \cdot[\mathrm{~A}]^{m} \cdot[\mathrm{~B}]^{n}$ [A] и [B] - концентрации веществ A и В, моль/л; k - константа скорости реакции, при $[\mathrm{A}]=[\mathrm{B}]=1, v=k$
H_{2}, I_{2}	$\mathrm{H}_{2}+\mathrm{l}_{2} \rightleftarrows 2 \mathrm{HI}$	$v=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] \quad \begin{aligned} & \begin{array}{l} \text { кинетические } \\ \text { уравнения; в кине- } \\ \text { тические уравнения } \end{array} \end{aligned}$
$\begin{gathered} \mathrm{NO}, \\ \mathrm{O}_{2} \end{gathered}$	$2 \mathrm{NO}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{NO}_{2}$	$v=$$k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$входят только кон- центрации газообраз ных и растворенных
N_{2} H_{2}	$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3}$	$v=k\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3} \left\lvert\, \begin{aligned} & \text { веществ и не входят } \\ & \text { концентрации твер- } \\ & \text { дых веществ } \end{aligned}\right.$
3. Tемпература		
A, B	$m \mathrm{~A}+n \mathrm{~B} \rightarrow \mathrm{C}$	При повышении температуры на $10^{\circ} \mathrm{C}$ скорость большинства химических реакций возрастает в 2-4 раза (правило Вант-Гоффа): $v_{t_{2}}=v_{t_{1}} \cdot \gamma^{\left(t_{2}-t_{1}\right) / 10}$ v_{t} и $_{t_{t_{2}}}$ - скорости реакций при началлной $\left(t_{1}\right)$ и конечной (t_{2}) температуре; γ - коэффициент скорости реакции, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры реагирующих веществ на $10^{\circ} \mathrm{C}$

Вещества	Реакция	Характер влияния
4. Давление (для газов)		
$\mathrm{H}_{2}, \mathrm{O}_{2}$	$\begin{gathered} 2 \mathrm{H}_{2}(\text { газ })+\mathrm{O}_{2}(\text { газ }) \\ 2 \mathrm{H}_{2} \mathrm{O}(\text { газ }) \end{gathered}$	При давлении p_{1} : $\mathrm{v}_{1}=k\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$; при давлении $p_{2}=2 p_{1}: \nu_{2}=k\left[2 \mathrm{H}_{2}\right]^{2}\left[2 \mathrm{O}_{2}\right]=$ $=k \cdot 4\left[\mathrm{H}_{2}\right]^{2} \cdot 2\left[\mathrm{O}_{2}\right]=8 k\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$. $\frac{v_{2}}{v_{1}}=\frac{8 k\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{k\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=8$. При увеличении давления в 2 раза скорость реакции возрастает в 8 раз
5. Присутствие катализатора (катализатор увеличивает скорость реакции, участвует в реакции, но остается к концу реакции неизменным)		
A, В и катализатор (K)		Присутствие катализатора снижает энергию активации реагирующих веществ $E_{\text {a }}$ (минимальная энергия, достаточная для перевода реагентов в состояние активированного комплекса), и тем самым, как правило, увеличивается скорость химической реакции. Катализатор направляет реакцию по новому пути (рис. 24,25)
Гомогенный катализатор		
$\underset{\substack{\mathrm{SO}_{2}, \mathrm{O}_{2} \\ \text { каталин- } \\ \text { затор }}}{ }$	$\begin{gathered} \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \xrightarrow{\mathrm{NO}} \mathrm{SO}_{3} \\ \mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}, \\ \mathrm{SO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{NO} \end{gathered}$	Гомогенная реакция протекает во всем объеме системы (катализатор и реагенты находятся в одной фазе)
Гетерогенный катализатор		
$\begin{gathered} \mathrm{SO}_{2}, \mathrm{O}_{2}, \\ \mathrm{~V}_{2} \mathrm{O}_{5} \\ \text { катали- } \\ \text { затор } \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2}(\text { газ })+1 / 2 \mathrm{O}_{2}(\text { газ }) \\ \xrightarrow{\mathrm{v}_{2} \mathrm{O}_{5}} \mathrm{SO}_{3}(\text { газ }) \end{gathered}$	Гетерогенная реакция протекает на поверхности твердого тела (катализатор и реагирующие вещества находятся в разных фазах)
6. Поверхность контакта реагирующих веществ		
$\mathrm{Zn}+\mathrm{HCl}$	$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \uparrow$	Скоростъ гетерогенной хими ческой реакџии возрастает по мере увеличения площади контакта твердого тела с реагентом: чем меньше размер частиц Zn , тем выше скорость реакции $\mathrm{Zn}+\mathrm{HCl}$

Phc. 24
Изменение энергии реагирующей системы
$\mathrm{H}_{\text {вая }}$ - әнергия исходного состояния (исходвые вещества);
$\mathrm{H}_{\text {кол }}$ - әвергия ковечвого состояния (продукты реакции);
E_{n} - әпергия активадии прямой реакдии;
A \cdots A
$\mathrm{E}_{\text {。 }}^{\prime \prime}$ - эвергия активадии обратной реакции;

$$
\begin{aligned}
& \text { B…B }
\end{aligned}
$$

Изменение әнтвльпии системы для каталитической (1) и некаталитической (2) реакций
Основной продесс: $\mathrm{A}+\mathrm{B}=\mathrm{AB}\left(\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}=\mathrm{SO}_{3}\right)$; образование вестойкого промежуточного соединения: $\mathrm{A}+\mathrm{K}=\mathrm{AK}\left(\mathrm{NO}+1 / 2 \mathrm{O}_{2}=\mathrm{NO}_{2}\right.$); взаимодействие промежуточного соединения АК с компоневтом реакциовной смеси B:
$\mathrm{AK}+\mathrm{B}=\mathbf{A B}+\mathrm{K}\left(\mathrm{SO}_{2}+\mathrm{NO}_{2}=\mathrm{SO}_{3}+\mathrm{NO}\right)$. В скобках в качестве примера приведены уравнения реакпий, протекающих при каталитическом окислении SO_{2} в SO (гомогевный катализатор NO).

Прнмеры равновесных систем

Реакиия	Скорость прямой реакции v_{1}	Скорость обратной реакции v_{2}	Константа равновесия $K_{p}=\frac{k_{1}}{\mathbf{k}_{2}}\left(\Pi p h v_{1}=v_{2}\right)$
$\stackrel{m \mathrm{~A}+n \mathrm{~B}}{\rightleftarrows} \underset{p \mathrm{C}+q \mathrm{D}}{\rightleftarrows}$	$v_{1}=k_{1}[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}$	$v_{2}=k_{2}[\mathrm{C}]^{p}[\mathrm{D}]^{q}$	
$\begin{gathered} \mathbf{N}_{2}+3 \mathbf{H}_{2} \rightleftarrows \\ 2 \mathrm{NH}_{3} \end{gathered}$	$\begin{gathered} v_{1}=k_{1}\left[\mathrm{~N}_{2}\right] \\ {\left[\mathrm{H}_{2}\right]^{3}} \end{gathered}$	$v_{2}=k_{2}\left[\mathrm{NH}_{3}\right]^{2}$	$\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
$\begin{aligned} & \left.\underset{\mathrm{FeCl}_{3}+3 \mathrm{KCNS}}{\rightleftarrows} \underset{\rightleftarrows}{\rightleftarrows} \mathrm{Fe(CNS}\right)_{3} \\ & +3 \mathrm{KCl} \end{aligned}$	$v_{1}=k_{1}\left[\mathrm{FeCl}_{3}\right]$ [KCNS] ${ }^{3}$	$\begin{gathered} v_{2}= \\ k_{2}\left[\mathrm{Fe}(\mathrm{CNS})_{3}\right] \\ {[\mathrm{KCl}]^{3}} \end{gathered}$	$\frac{\left[\mathrm{Fe}(\mathrm{CNS})_{2}\right][\mathrm{KCl}]^{\mathrm{a}}}{\left[\mathrm{FeCl}_{3} \mathrm{I}[\mathrm{KCNS}]^{3}\right.}$
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftarrows 2 \mathrm{HI}$	$v_{1}=k_{1}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$	$v_{2}=k_{2}[\mathrm{HI}]^{2}$	$\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2} \mathrm{I}_{2}\right]}$
$\begin{gathered} \mathrm{FeO}(\mathrm{~TB} .)+\mathrm{CO}(\mathrm{r}) \\ \stackrel{\mathrm{Fe}(\mathrm{~TB} .)}{\rightleftarrows}+ \\ \mathrm{CO}_{2}(\mathrm{r}) \end{gathered}$	$v_{1}=k_{1}[\mathrm{CO}]$	$v_{2}=k_{2}\left[\mathrm{CO}_{2}\right]$	$\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]}$
$\begin{aligned} & \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \underset{ }{\rightleftarrows} \rightleftarrows \mathrm{CO}_{2}+\mathrm{H}_{2}{ }^{*} \end{aligned}$	$\begin{gathered} v_{1}=k_{1}[\mathrm{CO}] \\ {\left[\mathrm{H}_{2} \mathrm{O}\right]} \end{gathered}$	$\begin{aligned} & v_{2}=k_{2}\left[\mathrm{CO}_{2}\right] \\ & {\left[\mathrm{H}_{2}\right]} \end{aligned}$	$\frac{[\mathrm{CO}]_{2}\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\begin{gathered} 2 \mathrm{NO}+\mathrm{O}_{2} \rightleftarrows \\ 2 \mathrm{NO}_{2} \end{gathered}$	$\begin{gathered} v_{1}= \\ k_{1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \end{gathered}$	$v_{2}=k_{2}\left[\mathrm{NO}_{2}\right]^{2}$	$\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}$

[^9]
6.6. HEOSPATMMBE 1 OSPATMMBIE PEAKLKA. XHNDYECKOE PABHOBLCME

Химические реакции можно разделить на две группы: необратимые и обратимые.

Необратимые реакции идут только в одном направлении и завершаются полным превращением исходных веществ в конечные продукты.

Например: $2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{t}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
Обратимые реакиии одновременно протекают в двух взаимно противоположных направлениях.

Например, $\mathrm{H}_{2}+\mathrm{I}_{2} \stackrel{v_{1}}{\stackrel{v_{2}}{=}} 2 \mathrm{HI}+Q$,
v_{1} - скорость прямой реакции ($v_{\text {пр }}$); v_{2} - скорость обратной реакции ($v_{\text {обр. }}$.).

Обратимые реакции идут не до конца, а до установления химического равновесия, которое для реакции (2) наступает тогда, когда в единицу времени образуется столько же молекул HI , сколько их распадается на молекулы H_{2} и I_{2}. Следовательно, химическое равновесие - это состояние системы, при котором скорость прямой реакции v_{1} равна скорости обратной реакции v_{2} (рис. 26).

Pис. 26
Изменение скорости прямой (1) и обратной (2) реакций с течением времени

Для любой равновесной системы

$$
m \mathrm{~A}+n \mathrm{~B} \rightleftarrows p \mathrm{C}+q \mathrm{D} \quad K_{\mathrm{p}}=\frac{[\mathrm{C}]^{p}[\mathrm{D}]^{q}}{[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}},
$$

где K_{p} - константа равновесия, [A], [B], [C], [D] - равновесные концентрации реагентов и продуктов реакции.

Приведенное уравнение является математическим выражением закона действующих масс применительно к обратимым процессам. Оно означает, что при установившемся равновесии произведение концентраций продуктов реакции, деленное на произведение концентраций исходных веществ (для данной реакции при $T=$ const), представляет собой постолнную величину, называемую константой равновесия. Величина K_{p} определяет глубину протекания процесса коменту достижения равновесного состояния: чем больше K_{p}, тем больше степень превращения реагентов в продукты реакции. Примеры некоторых обратимых реакций приведены в табл. 26.

На состояние химического равновесия оказывают влияние концентрация реагирующих веществ, температура, а для газообразных веществ - и давление в системе. При изменении одного из условий равновесие нарушается, и концентрации реагирующих веществ будут изменяться до тех пор, пока не установится новое положение равновесия (равновесные концентрации ужебудут другими). Такой переход системы из одного равновесного состояния в другое называют смещением, или сдвигом положения равновесия.

Направление сдвига химического равновесия в результате изменения внешних условий определяется принципом подвижного равновесия, или принципом Ле Шателье:
*Если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяются концентрация, температура, давление), то это воздействие благоприятствует протеканию той из двух противоположных реакций, которая ослабляет произведенное воздействие».

Влияние нзменения условий ва положение

химического равновесия согласно принципу Ле Шателье

Соотношение $v_{n p} u v_{o \sigma p}$	Напраөление смещения равновесия реакции
$v_{\text {пр }}>v_{\text {o6p }}$	Равновесие смещается в сторону образования NH_{3}, т. е. возрастает скорость реакции, по которой вводимое вещество расходуется
$v_{\text {rip }}<v_{\text {obp }}$	Равновесие смещается влево, т. е. уменьшается скорость реакции, по которой образуется вещество (концентрация NH_{3} уменьшается)
$v_{\text {np }}<v_{\text {o6p }}$	Равновесие смещается влево, т. е. в сторону әндотермической реакции
$v_{\text {тр }}>v_{\text {обр }}$	Равновесие смещается вцраво, т. е. в сторону экзотермической реакщии (в большей степени понижается скорость әндотермической реакции)
$v_{\mathrm{np}}>v_{\text {o6p }}$	Равновесие смепается вправо - в сторону меньшего числа молей газообразных веществ в системе (с повыпением давления меньшее число частиц занимает меньший объем)
$v_{\text {np }}<v_{\text {ofp }}$	Равновесие смещается влево, т. е. в сторону увеличения числа молей газообразных веществ в системе
$v_{\text {пр }}<v_{\text {обр }}$	Равновесие смещается влево, в сторону меньшего числа частиц
$v_{\text {np }}>v_{\text {ofp }}$	Равновесие смещается вправо, в сторону большего числа частиц
$v_{\text {mp }}=v_{\text {o6p }}$	Изменение давления не влияет на положение химического равновесия, если в ходе реакции объем газообразных веществ не изменяется (суммарное число молей исходных веществ равно суммарному числу молей продуктов реакщии)

Примечание: при введении катализатора в систему скорости прямой и обратной реакций изменяются одинаково ($v_{\text {ар }}=v_{\text {овр }}$).

В табл. 27 рассмотрено влияние различных факторов (концентрации, температуры, давления) на положение химического равновесия при протекании ряда реакций.

Анализируя приведенные в табл. 27 данные, можно сделать следующие выводы:

1. Повышение концентрации одного из реагентов смещает равновесие в сторону прямой реакции, понижение концентрации одного из реагентов смещает равновесие в сторону обратной реакции.
2. При повышении температуры равновесие смещается в сторону эндотермической реакции; при понижении температуры - в сторону экзотермической реакции.
3. Повышение давления смещает равновесие в сторону уменьшения объема реагирующей системы (в сторону меньшего числа частиц); понижение давления смещает равновесие в сторону увеличения объема реагирующей системы (в сторону большего числа частиц).

Принцип Ле Шателье был сформулирован в общем виде А. Ле Шателье в 1885 году и теоретически обоснован Ф. Брауном в 1887 году. Следует иметь в виду, что принцип Ле Шателье применим не только к химическим, но и ко всем физико-химическим равновесиям. Вчастности, в соответствии с этим принципом при воздействии внешних условий смещается равновесие в таких процессах, как кристаллизация, кипение, растворение, взаимное превращение различных аллотропных модификаций.

Принцип Ле Шателье только качественно описывает зависимость химического равновесия от внешних условий. Для расчета конкретных химических равновесий необходимо знать, в частности, зависимость химических потенциалов от состава смеси, температуры и давления. Химический потенциал - это параметр термодинамического состояния системы, играющий роль силы при перераспределении масс компонентов. Различие химических потенциалов какого-либо компонента в двух фазах приводит к переходу его фазы с большим значением химического потенциала в фазу с меньшим значением вплоть до установления в системе фазового равновесия.

7. PACTBOPM

Pacmворы - это гомогенные физико-химические системы, состолщие из растворителя, растворенного вещества и продуктов их взаимодействия.

Например, раствор $\mathrm{H}_{2} \mathrm{SO}_{4}$ в $\mathrm{H}_{2} \mathrm{O}$ - это система, которая состоит из $\mathrm{H}_{2} \mathrm{SO}_{4}$ (растворенное вещество), $\mathrm{H}_{2} \mathrm{O}$ (растворитель) и продуктов взаимодействия растворителя с растворенным веществом: ионы $\mathrm{H}^{+}, \mathrm{HSO}_{4}^{-}, \mathrm{SO}_{4}^{2-}$, гидраты $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

В водных растворах, растворителем в которых является вода, могут быть растворены твердые (Т), жидкие (Ж) и газообразные (Г) вещества:

Ж-Т (в жидком растворяется твердое вещество, например соли, щелочи, сахар в воде);

Ж-Ж (в жидком растворяется жидкое, например спирт, ацетон, серная или азотная кислота в воде);

Ж-Г (в жидком растворяется газообразное вещество, например аммиак, хлороводород, оксид угл̣ерода (IV) в воде).

Помимо жидких растворов существуют твердые растворы (Т-Г, Т—Ж и Т-Т) и газовые (Г-Г). Примерами твердых растворов могут служить хемосорбированный водород в платине ($\mathrm{T}-\Gamma$), раствор ртути в серебре (T —Ж) и серебра в золоте (T-T); примером газовых растворов ($Г$-Г) является воздух.

Водные растворы в зависимости от состава растворенного вещества могут иметь кислую, нейтральную или щелочную среду, а также обладать способностью проводить электрический ток (растворы электролитов).

Насыщенный раствор - раствор, в котором при данной температуре вещество больше не растворяется, т. е. раствор, находящийся в равновесии с избыточным количеством самостоятельной фазы растворенного вещества.

Ненасыщенный раствор - раствор, в котором при данной температуре находится меньше растворяемого вещества, чем в его насыщенном растворе.

Перенасыщенный раствор - раствор, в котором при данной температуре в растворенном состоянии находится больше вещества, чем в его насыщенном растворе при тех же условиях. Если избыток вещества выпадет в осадок, (например, при легком сотрясении сосуда) пересыщенный раствор превратится в насыщенный.

Различают также разбавленные и концентрированные растворы. Кразбавленным относят растворы с небольшим содержанием растворенного вещества по сравнению с содержанием растворителя, а к концентрированным растворы с большим содержанием растворенного вещества. Разбавленные растворы имеют структуру, близкую к структуре растворителя, а концентрированные - струкпуру, близкую к структуре растворенного вещества.

Понятия разбавленный и концентрированный растворы являются относительными, отражающими соотношение количеств растворителя и растворенного вещества в растворе. Поэтому иногда встречаются понятия крепкий в значении концентрированный или слабый в значении разбавленный раствор.

7.1. OCHOBHME IOJOXEHEK XHMELECKOİ TEOPHA PACTBOPOB A. H. MEHAEJEEBA

Химическая теория растворов была создана и обоснована экспериментально Д. И. Менделеевым в 1887 году. Основные положения этой теории следующие.

1. Растворение является сложным физико-химическим процессом, включающим разрушение структуры растворяемого вещества, требующее затраты энергии ($\Delta H_{1}>0$), и взаимодействие молекул растворителя с молекулами растворенного вещества, связанноес выделением энергии ($\Delta H_{2}<\mathbf{0}$).
2. Процесс растворения может быть экзотермическим (с выделением теплоты, $\Delta H<0$) (например, растворение NaOH или $\mathrm{H}_{2} \mathrm{SO}_{4}$ в воде) и эндотермическим (с поглощением теплоты, $\Delta H>0$) (например, растворение $\mathrm{NH}_{4} \mathrm{NO}_{3}$ в воде). Теплоту, выделяемую при растворении веществ, называют теплотой растворения.
3. В результате химического взаимодействия растворителя и растворенного вещества образуются сольваты (если растворителем является спирт) или гидраты (если растворителем является вода). Гидраты, выделенные из водных растворов, называют кристаллогидратами:
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ - медный купорос;
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ - железный купорос;
$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ - цинковый купорос;
$\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ - никелевый купорос;
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ - глауберова соль;
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ - гипс;
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ - алюминиевокалиевые квасцы;
$\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ - хромокалиевые квасцы; $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ - железоаммониевые квасцы (сульфат диаммония-железа (II)).

Из приведенных кристаллогидратов наиболее широкое применение имеют железный, медный, никелевый и цинковый купорос.

Образование сольватов и гидратов иногда изменяет свойства растворенного вещества. Например, безводная соль CuSO_{4} имеет белый цвет, а кристаллогидрат $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ - синий; кристаллический йод фиолетового цвета, а его раствор в спирте (сольват) имеет коричневую окраску.

На базе химической теории растворов Д. И. Менделеева возникли такие новые научные направления, как физико-химический анализ, химия комплексных соединений, электрохимия неводных растворов. Известный вклад в развитие химической теории растворов внесли русские ученые Д. П. Коновалов, И. А. Каблуков, Н. С. Курнаков, В. А. Кистяковский.

Виологическая роль водных растворов

Исключительно велика биологическая роль водных растворов, поскольку именно водные растворы в природе являются той естественной средой, в которой развиваются все клеточные процессы. Существует теория, утверждающая, что жизнь возникла в воде. Растения извлекают азот, фосфор, калий, микроэлементы исключительно из водных растворов почвы.

7.2. PACTBOPHMOCTB ВЕЩECTB В ВОДЕ

Растворимость - способность вещества растворяться в воде или в другом растворителе. Количественно выражается числом граммов вещества, которое можно максимально растворить в 100 г растворителя при данной температуре.

Например, сахар, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{3}, \mathrm{HCl}$ хорошо растворимы в воде. Многие металлы, инертные газы, CaCO_{3}, $\mathrm{BaSO}_{4}, \mathrm{AgCl}$ практически нерастворимы в воде. $\mathrm{N}_{2}, \mathrm{O}_{2}$, $\mathrm{CaSO}_{4}, \mathrm{MgSO}_{3}$ мало растворимы в воде.

Растворимость большинства твердых веществ, как правило, с повышением температуры увеличивается (рис. 27), а газообразных - понижается (рис. 28).

Рнс. 27 Зависимость растворимости некоторых солей (твердые вещества) в воде от температуры

С увеличением давления растворимость газов в жидкостях возрастает. Растворимость различных газов, в первую очередь кислорода, оксида углерода (IV) и азота, в жидких средах имеет большое значение для нормального протекания физиологических процессов в организме человека. Например, изменение растворимости газов в крови в связи с изменением давления приводит к таким заболеваниям, как «кесонная» и «горная» болезни. Такие заболевания могут возникать у водолазов при быстром их подъеме на поверхность, когда резкое снижение давления приводит к бурному выделению растворенных в крови газов. Аналогичные явления наблюдаются и при разгерметизации кораблей и скафандров космонавтов.

7.3. CHOCOSM BHPAXEHMA KOHHEHTPAHHM PACTBOPOB

Массовая доля растворенного вещества

m_{z} - масса растворенного вещества, m_{p} - масса раствора, $m_{\mathrm{H}_{2} \mathrm{O}}$ - масса воды, ρ - плотность раствора, V - объем раствора.

Пример. Определить массу соли, содержащейся в растворе объемом 0,5 л, если массовая доля соли в этом растворе $\omega=20 \%$, а плотность раствора $\rho=1,2$ г/мл.

Решение. Из формулы $\omega(\%)=\frac{m_{\text {в }}}{\rho \cdot V} \cdot \mathbf{1 0 0} \%$ опреде-

$$
m_{\mathrm{s}}=\frac{\rho V \omega}{100}=\frac{1,2 \cdot 500 \cdot 20}{100}=120 \text { г. }
$$

n - количество растворенного вещества (моль), V - объем раствора (л), m - масса растворенного вещества (кг, г), M - молярная масса растворенного вещества (кг/ моль, г/моль).

1 M - одномолярный раствор (в 1 л раствора содержится 1 моль растворенного вещества);
$0,5 \mathrm{M}$ - полумолярный раствор;
$0,1 \mathrm{M}$ - децимолярный раствор;
$0,01 \mathrm{M}$ - сантимолярный раствор;
$0,001 \mathrm{M}$ - миллимолярный раствор (в 1 л раствора содержится 0,001 моля растворенного вещества).

Пример. Определить молярную концентрацию раствора, в 500 мл которого содержится 0,5 г серной кислоты.

Решение. Из формулы $C_{M}=\frac{m}{M \cdot V}$ определяем $\mathrm{C}_{\mathrm{M}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$:
$C_{M}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}{M\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \cdot V} \cdot 1000=\frac{0,5}{98 \cdot 500} \cdot 1000=0,01$ моль $/$ л.

Моляльная концентрация

n - число молей растворенного вещества;
m_{1} - масса растворенного вещества;
m_{2} - масса растворителя;
M - молярная масса растворенного вещества.
Пример. Определить моляльную концентрацию раствора, приготовленного из 4 г KOH и 200 г $\mathrm{H}_{2} \mathrm{O}$.

Решение. Из формулы $b=\frac{m_{1}}{M m_{2}}$ определяем b
(КОН): $b(\mathrm{KOH})=\frac{m(\mathrm{KOH})}{M(\mathrm{KOH}) m\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{4}{56 \cdot 0,2} \cong 0,36($ моль $/$ кг $)$.

TuTp

m - масса растворенного вещества (г);
V - объем раствора (мл).
Пример. Определить титр раствора, в 150 мл которого содержится 7,5 г $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Решение. Из формулы $T=\frac{m}{V}$ находим:

$$
T\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\frac{m\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)}{V}=\frac{7,5}{150}=0,05(\Gamma / \mathrm{M} \pi) .
$$

Для приготовления раствора с известным титром (титрованного раствора) необходимо взять точную навеску вещества, рассчитанную на требуемый объем, растворить в воде и довести до нужного объема.

8. ЭЛЕКТРОЛНТИЧЕСКАЯ диССОциация

8.1. ОЛЕЕТРОЛНТЫ К НЕЗЛЕKTPOJHTH

8.2. TEOPMЯ ЭЛЕКТРОЛНТНЧЕСЕОЛ ДИССОЦИАЦИИ

Электролитическая диссоциация - процесс распада (диссоциация) электролита на ионы при его растворении в воде или расплавлении. Теория электролитической диссоциации (ТЭД) обоснована в 1887 году шведским ученым С. Аррениусом.

Основные положения ТЭД:

1. Электролиты при их растворении в воде или в расплавленном состоянии распадаются (диссоциируют) на ионы: положительные - катионы и отрицательные анионы. Ионы - это атом или группа атомов, имеющие положительный (катионы) или отрицательный (анионы) заряд:

2. Ионы отличаются от атомов по строению и по свойствам:

Атомы Na^{0} легко отдают $3 s^{1}$-электроны; химически атомы Na очень активны, окисляются на воздухе, реагируют с водой и т. д.

$$
{ }_{11}^{11} \mathrm{Na}^{+} \quad 1 s^{2} 2 s^{2} 2 p^{6}{ }_{\text {нлектроввая } \text { формула но̣ва } \mathrm{Na}^{+}}
$$

Ионы Na^{+}не отдают электроны, не могут окисляться и не реагируют с водой.
3. В растворе и расплаве электролита движение ионов хаотическое (рис. 29), а при пропускании постоянного электрического тока через раствор или расплав электролита катионы \oplus движутся к катоду $(-)$, а анионы $(-)-$ к аноду (+) (рис. 30).

Рис. 29
Хаотическое движение ионов в растворах и расплавах

Рис. 30
Направленное движение ионов при пропускании постоянного тока через электролит
4. Процесс электролитической диссоциации - процесс обратимый. Например, в обратимых реакциях:

$$
\mathrm{NH}_{4} \mathrm{OH} \rightleftarrows \underset{\text { катиов }}{\mathrm{NH}_{4}^{+}}+\underset{\text { авнов }}{\mathrm{OH}^{-}}
$$

$$
\mathrm{HCl} \rightleftarrows \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

прямая реакция называется диссоциацией электролита, обратная реакция - процесс образования молекул из ионов - называется (моляризацией) ассоциацией ионов.

8.3. СТЕПЕНЬ ЭЛЕКТРОЛІТМЧЕСХОИ диссоциации

$$
\alpha=\frac{N_{\text {дис }}}{N_{\text {общ }}} \cdot 100 \%
$$

$N_{\text {дис }}$ - число молекул, распавшихся на ионы, $N_{\text {общ }}$ - общее число молекул, введенных в раствор.

Если $\alpha=100 \%$, это означает, что $N_{\text {дис }}=N_{\text {общ }}$, т. е. из 100 молекул, находящихся в растворе, диссоциируют все 100 молекул;

если $\alpha=50 \%$, это означает, что при $N_{\text {общ }}=100$ молекул $N_{\text {дис }}=50$ молекул, т. е. из 100 молекул диссоциирует только 50;

если $\alpha=0$, это означает, что вещество не диссоциирует.

В табл. 28 приведены значения α для некоторых кислот, оснований и солей.

Степень диссоциации некоторых кислот, оснований и солей в водвых растворах при $18^{\circ} \mathrm{C}$ и концентрадии с $=1$ моль/л

Формула электролита	$a, \%$	Характер злектролита	Формула электралита	a, \%	Характер электролита
HCl	92	Сильные кислоты	$\mathrm{Ba}(\mathrm{OH})_{2}$	92	Сильные основания (щелочи)
HBr	92		KOH	89	
HI	92		NaOH	84	
HNO_{3}	92		$\mathrm{NH}_{4} \mathrm{OH}$	1,3	Слабое основание
$\mathrm{H}_{2} \mathrm{SO}_{4}$	58				
$\mathrm{H}_{2} \mathrm{SO}_{3}$	34	Кислоты средней силы	KCl	86	Сильные электролиты (большинство растворимых солей)
$\mathrm{H}_{3} \mathrm{PO}_{4}$	27		$\mathrm{NH}_{4} \mathrm{Cl}$	85	
HF	8,5	Слабые кислоты	NaCl	84	
HNO_{2}	6,4		KNO_{3}	83	
$\mathrm{CH}_{3} \mathrm{COOH}$	1,3		AgNO_{3}	81	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	0,17		$\mathrm{CH}_{3} \mathrm{COONa}$	79	
$\mathrm{H}_{2} \mathrm{~S}$	0,07		ZnCl_{2}	73	
HCN	0,01		$\mathrm{Na}_{2} \mathrm{SO}_{4}$	69	
$\mathrm{H}_{3} \mathrm{BO}_{3}$	0,01		CuSO_{4}	40	

Степень электролитической диссоциации α зависит от кондентрации раствора и температуры (при увеличении температуры и разбавлении раствора α увеличивается), от природы электролита (силы связи между катионом и анионом в молекуле электролита) и растворителя (от его диэлектрической пронидаемости и способности сольватировать ионы).
8.4. СИЛВНЫE K CIABBE ОЛEKTPOЛIITI

Степень диссоциации слабого электролита, определенная различными способами (например, по измерению температуры кипения или электропроводности), дает удовлетворительные совпадения. Для сильных электролитов аналогичной закономерности не наблюдается.

Так как степень электролитической диссоциации изменяется с концентрацией раствора, то силу кислот и оснований удобнее характеризовать по константе их диссоциации (см. раздел 8.8).

8.5. MEXARMBMG ПНССОДНАЩГH ОЛЕKTPOHITOB

Механизмы диссоциации электролитов с ионным и ковалентным (полярным) типом связи представлены на рис. 31, 32, 33.

Рнс. 31
Схема процесса растворения кристалла NaCl в воде
Разрыв гетерополярной связи между Na^{+}и Cl^{-}за счет ионно-дипольного взаимодействия ионов Na^{+} и Cl^{-}с полярными молекулами воды: A - гидратация поверхностнорасположенных ионов (предварительная стадия процесса растворения кристалла в воде); B - свободные гидратированные ионы, продиффундировавшие в жидкую фазу.
Рис. 32
Схема диссоциации кристалла KCl
1 - ориентация полярных молекул $\mathrm{H}_{2} \mathrm{O}$ вокруг кристалла; 2,3 - образование гидратированных катионов ($\mathrm{K}_{\text {гадр }}^{+}$) и анионов ($\mathrm{Cl}_{\text {гидр }}^{-}$).

Рис. 33
Механизм диссоциации электролитов с ковалентным тишом связи (на примере HCl)
A - ориентация полярных молекул воды вокруг молекул. HCl ; B - переход (изменение) типа связи с ковалентной полярной на ионную; B - диссоциация кислоты HCl с образованием гидратированного катиона ($\mathrm{H}_{\text {гидр }}^{+}$) и гидратированного аниона ($\mathrm{Cl}_{\text {гидр }}^{-}$).

8.6. ЗЛЕКТРОЛКТКЧЕСКАЯ диссоциацря кислот

$$
\begin{gathered}
\mathrm{HCl} \rightleftarrows \mathrm{H}^{+}+\mathrm{Cl}^{-}, \quad \begin{array}{r}
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}+\mathrm{Cl}^{-} ;
\end{array} \\
\mathrm{HNO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}, \quad \underbrace{\mathrm{HNO} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}+\mathrm{NO}_{3}^{-}}_{\text {диссоциация с учетом воды }}
\end{gathered}
$$

$\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$- ион гидроксония, образуется по реакции:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow\left[\mathrm{H}_{3} \mathrm{O}\right]^{+} .
$$

Многоосновные кислоты диссоциируют ступенчато:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}-1 \text {-я ступень; } \\
\mathrm{HSO}_{4}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}-2 \text {-я ступень; } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}-\text { полная диссодиация. }
\end{gathered}
$$

Ступенчатой диссоциацией многоосновных кислот можно объяснить образование кислых солей (KHSO_{4}, $\left.\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}\right)$.

Диссоциация $\mathrm{H}_{2} \mathrm{SO}_{4}$ с учетом воды:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}+\mathrm{HSO}_{4}^{-}-1 \text {-я ступень; } \\
\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2-}-2\right. \text {-я ступень; } \\
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}+\mathrm{SO}_{4}^{2-}-\text { полная } \\
\text { диссоциация. }
\end{gathered}
$$

Растворимые кислоты в водных растворах диссоциируют на ионы H^{+}и ионы кислотных остатков.

Общие характерные свойства кислот определяются именно присутствием ионов водорода (изменение окраски индикатора, реакция нейтрализации и др.), и по этой причине кислоте можно дать следующее определение:

кислота - это электролит, который в водных растворах диссоциирует с образованием катионов водорода (H^{+}) и анионов кислотных остатков.

OCROBNHM

Растворимые основания (щелочи) в водных растворах диссоциируют на отрицательно заряженные гидроксидионы и положительные ионы металлов:
$\left.\begin{array}{l}\mathrm{KOH} \rightleftarrows \mathrm{K}^{+}+\mathrm{OH}^{-} \\ \mathrm{NaOH} \rightleftarrows \mathrm{Na}^{+}+\mathrm{OH}^{-}\end{array}\right\}$- однокислотные основания
Многокислотные основания диссоциируют ступенчато:

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2} \underset{ }{\rightleftarrows}[\mathrm{BaOH}]^{+}+\mathrm{OH}^{-} \text {- } 1 \text {-я ступень; } \\
& {[\mathrm{BaOOH}]^{+} \underset{ }{\rightleftarrows} \mathrm{Ba}^{2+}+\mathrm{OH}^{-}-2 \text {-я ступень; }} \\
& \mathrm{Ba}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \text {- полная диссоциация. }
\end{aligned}
$$

Ступенчатой диссоциацией оснований многозарядных металлов объясняется их способность образовывать основные соли ($\mathrm{FeOHCl}, \mathrm{Al}(\mathrm{OH})_{2} \mathrm{NO}_{3}$ и др.).

Общие характерные свойства оснований определяются присутствием в растворах гидроксид-ионов (изменение окраски индикаторов, реакция нейтрализации, взаимодействие с растворимыми солями), и по этой причине основанию, как и кислоте, можно дать определение, исходя из характера электролитической диссоциации:

основание - это электролит, который в водных растворах диссоциирует с образованием только одного вида анионов - гидроксид-ионов (OH).

Амфотерные основания $\left(\mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Cr}(\mathrm{OH})_{3}\right.$, $\mathrm{Pb}(\mathrm{OH})_{2}$ и др.) диссоциируют в водном растворе как по типу кислот, так и по типу оснований. Они вступают в реакцию и с кислотами, и с основаниями:
$2 \mathrm{OH}^{-}+\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \underset{\mathrm{H}^{-}}{\rightleftarrows} \mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{nH}_{2} \mathrm{O} \stackrel{\mathrm{OH}^{-}}{\rightleftarrows}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}+2 \mathrm{H}^{+}$,
$\mathrm{Al}^{3+} \underset{\mathrm{H}}{\stackrel{\mathrm{OH}}{\rightleftarrows}} \mathrm{Al}(\mathrm{OH})_{3} \underset{\mathrm{H}^{-}}{\stackrel{\mathrm{OH}}{ }} \stackrel{+}{\rightleftarrows}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$или $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$.

8.8. ROHCTAFTA дНссоциации

Если процесс диссоциации представить в виде уравнения обратимой реакции

$$
\mathrm{KA} \rightleftarrows \mathrm{~K}^{+}+\mathrm{A}^{-},
$$

то скорости прямой v_{1} и обратной v_{2} реакций можно записать в следующем виде:

$$
v_{1}=k_{1}[\mathrm{KA}], v_{2}=k_{2}\left[\mathrm{~K}^{+}\right]\left[\mathrm{A}^{-}\right],
$$

где [KA] - концентрация электролита; [K ${ }^{+}$]и [$\left.\mathrm{A}^{-}\right]$— концентрации катиона и аниона соответственно.

Для обратимого и равновесного процесса электролитической диссоциации скорости прямой и обратной реакции равны ($v_{1}=v_{2}$), поэтому, применяя закон действующих масс к обратимым системам (см. раздел 6.6), получим

$$
K_{\mathrm{g}}=\frac{k_{1}}{k_{2}}=\frac{\left[\mathrm{K}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{KA}]}
$$

Величина K_{g} называется константой диссоциации электролита. Чем больше K_{g}, тем меньше недиссоциированных молекул в растворе, т. е. тем сильнее электролит; чем меньше $K_{\text {g }}$, тем больше недиссоциированных молекул и тем электролит слабее. Например, уксусная кислота $\left(K_{\mathrm{g}}=1,76 \cdot 10^{-5}\right)$ примерно в 10 раз слабее муравьиной кислоты $\mathrm{HCOOH}\left(K_{\mathrm{g}}=1,8 \cdot 10^{-4}\right)$. Следовательно K_{g} является более точной характеристикой «силы» электролита, чем степень диссоциации α.

К водным растворам слабых электролитов, молекулы которых распадаются на однозарядные ионы $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$, $\mathrm{HCN}, \mathrm{NH}_{4} \mathrm{OH}$), применима формула $\mathrm{K}_{\mathrm{g}}=\alpha^{2} \cdot \mathrm{C}$, где $\mathrm{C}-$ общая концентрация электролита (моль/л), α - степень диссоциации (доли единицы).

При ступенчатой диссоциации многоосновных кислот

каждая ступень характеризуется своей константой диссоциации. Приэлектролитической диссоциации фосфорной кислоты по 1-й ступени

$$
\mathrm{H}_{3} \mathrm{PO}_{4}^{-} \stackrel{K_{1}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}
$$

константу диссоциации можно выразить следующим образом:

$$
K_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \cong 7 \cdot 10^{-3}\left(\alpha_{1}=27 \%\right)
$$

для 2-й ступени

$$
\begin{gathered}
\mathrm{H}_{2}^{-} \mathrm{PO}_{4}^{-} \stackrel{K_{2}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} \\
K_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]} \cong 6 \cdot 10^{-8}\left(\alpha_{2}=0,15 \%\right) ;
\end{gathered}
$$

для 3-й ступени

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{PO}_{4}^{2-} \stackrel{K_{3}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-} \\
K_{3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \cong 2 \cdot 10^{-13}\left(\alpha_{3}=0,005 \%\right)
\end{gathered}
$$

Из сравнения K_{1}, K_{2} и K_{3} видно, что по 1 -й ступени диссоциаций $\mathrm{H}_{3} \mathrm{PO}_{4}$ является кислотой средней силы, а по 2 -й и 3 -й ступеня̣м - слабой и очень слабой: $K_{1}>K_{2}>K_{3}$.

Константы диссоциации показывают, что в растворе $\mathrm{H}_{3} \mathrm{PO}_{4}$ присутствуют в основном дигидрофосфат-ионы $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, в меньшей степени - гидрофосфат-ионы $\mathrm{HPO}_{4}{ }^{2-}$ и в очень малой фосфат-ионы. Такая особенность протекания процесса ионизации $\mathrm{H}_{3} \mathrm{PO}_{4}$ обясняет способность легко образовывать кислые соли, например $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (дигидрофосфат натрия), CaHPO_{4} (гидрофосфат кальция) и др.

8.9. ЭЛЕЕІРОЛITTKYCXAЯ дкссоциация солеі̆

Диссоциация средних солей
Средние соли - это электролиты, которые в водных растворах диссоциируют на катионы металлов (а также катион аммония NH_{4}^{+}) и анионы кислотных остатков:

$$
\begin{gathered}
\mathrm{BaCl}_{2} \rightleftarrows \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}, \\
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightleftarrows 2 \mathrm{Fe}^{3+}+3 \mathrm{SO}^{2-}, \\
\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightleftarrows 3 \mathrm{NH}_{4}^{+}+\mathrm{PO}_{4}^{3-} .
\end{gathered}
$$

Диссоциация кислых солей

Кислые соли - это электролиты, которые в водных растворах диссоциируют на катионы металлов и водорода и анионы кислотных остатков:

$$
\begin{aligned}
\mathrm{KHSO}_{4} & \rightleftarrows \mathrm{~K}^{+}+\mathrm{HSO}_{4}^{-} \\
\mathrm{HSO}_{4}^{-} & \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{-} .
\end{aligned}
$$

Диссоциация основных солей

Основные соли - это электролиты, которые в водных растворах диссоциируют на катионы основных остатков и анионы кислотных остатков:

$$
\begin{array}{rc}
\mathrm{CuOHCl} & \rightleftarrows \mathrm{CuOH}^{+}+\mathrm{Cl}^{-}, \\
\mathrm{MgOHNO}_{3} & \rightleftarrows \mathrm{MgOH}^{+}+\mathrm{NO}_{3}^{-} .
\end{array}
$$

Возможна и вторая ступень диссоциации:

$$
\begin{gathered}
\mathrm{CuOH}^{+} \rightleftarrows \mathrm{Cu}^{2+}+\mathrm{OH}^{-}, \\
\mathrm{MgOH}^{+} \rightleftarrows \mathrm{Mg}^{2+}+\mathrm{OH}^{-} .
\end{gathered}
$$

Диссоциация комлексных солей Комплексные соли диссоциируют также ступенчато:

$$
\begin{aligned}
& \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} \rightleftarrows\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-} \text {- 1-я ступень, } \\
& {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightleftarrows \mathrm{Ag}^{+}+2 \mathrm{NH}_{3}-2 \text {-я ступень }} \\
& \text { (идет очень слабо). }
\end{aligned}
$$

8.10. KOHHBE УPABHEHMG РЕАКЦІІ

Высокую скорость многих химических реакций в растворах электролитов можно объяснить тем, что они протекают не между молекулами, а между ионами. Для выявления суцности таких реакций их удобнее записывать не в молекулярном, а в ионно-молекулярном виде (табл. 29). Такие уравнения называют еще цонными.

В ионно-молекулярных уравнениях в виде ионов записываются сильные электролиты, а в виде молекул малорастворимые соединения, газы и слабые электролиты.

таблица 29
Составление ионного уравнения

Правила составления ионного уравнения реакции	Пример
1. Записать уравнение реакции в молекулярном виде	1. $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaCl}$
2. По таблице растворимости (см. приложение 3) определить растворимость каждого вещества	$\underset{\text { 2. }}{\mathrm{BaCl}_{2}}+\underset{\text { p }}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \rightarrow \underset{\mathbf{H}}{\mathrm{BaSO}_{4} \downarrow}+\underset{\text { p }}{2 \mathrm{NaCl}}$
3. Записать уравнения диссоциации исходных веществ и продуктов реакции	$\text { 3. } \begin{aligned} & \mathrm{BaCl}_{2} \\ & \stackrel{\mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}}{ } \\ & \mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftarrows 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \\ & 2 \mathrm{NaCl} \text { 2 } \mathrm{Na}^{+}+2 \mathrm{Cl}^{-} \end{aligned}$
4. Составить полное ионное уравнение реакции	4. $\begin{aligned} & \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{Na}^{+}+\mathrm{SO}^{2}{ }^{2-} \rightarrow \\ & \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-} \\ & \hline \end{aligned}$
5. Найти одинаковые ионы в левой и правой частях, сократитъ их и записать сокращенное ионное уравнение реакции	$\begin{gathered} \text { 5. } \mathrm{Ba}^{2+}+2 \mathrm{Cl}=+2 \mathrm{Na}^{ \pm}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \\ \rightarrow \mathrm{BaSO}_{4} \downarrow+\underline{2 \mathrm{Na}^{ \pm}}+\underline{2 \mathrm{Cl}}= \\ \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \downarrow \end{gathered}$

Большая практическая ценность ионных уравнений реакций состоит в использовании качественных реакций на различные ионы. Например, при помощи ионов серебра Ag^{+}можно обнаружить присутствие в растворе ионов галогенов ($\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$), а при помощи ионов Ba^{2+} можно обнаружить ионы SO_{4}^{2-} (см. с. 136-137).

8.11. УСЛОВНЯ ПРОТЕКАНГI РЕАХЩГ KOHHOLO OSMEHA ДО सОНЦА

Реакции в водных растворах электролитов идут между ионами, образующимися в результате диссоциации электролитов, и поэтому они называются реакциями ионного обмена.

Реакции ионного обмена идут до конца только в следующих трех случаях.

1. Если образуется осадок \downarrow :

$$
\begin{aligned}
& \underset{\mathrm{p}}{\mathrm{CuSO}_{4}}+\underset{\mathrm{p}}{2 \mathrm{NaOH}} \rightarrow \underset{\mathrm{H}}{\mathrm{Cu}(\mathrm{OH})_{2}} \downarrow+\underset{\mathrm{p}}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \\
& \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \downarrow ; \\
& \underset{\mathrm{p}}{3 \mathrm{CaCl}_{2}}+\underset{\mathrm{p}}{2 \mathrm{Na}_{3} \mathrm{PO}_{4}} \rightarrow \underset{\mathrm{p}}{\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \mathfrak{L}+\underset{\mathrm{p}}{6 \mathrm{NaCl}} \\
& 3 \mathrm{Ca}^{2+}+2 \mathrm{PO}_{4}{ }^{3-} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow
\end{aligned}
$$

2. Если выделяется газ \uparrow :

$$
\begin{aligned}
& \mathrm{Na}_{\mathrm{p}} \mathrm{~S}+\underset{\mathrm{p}}{\mathrm{HCl}} \rightarrow \underset{\mathrm{p}}{ } \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{~S} \uparrow \\
& \mathrm{~S}^{2-}+2 \mathrm{H}^{+} \rightarrow \quad \mathrm{H}_{2} \mathrm{~S} \uparrow ; \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{4}+\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\lambda} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CO}_{2} \uparrow
\end{aligned}
$$

3. Если образуется слабый электролит (малодиссоциирующее вещество):
```
\(\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}\)
    \(\mathrm{p} \quad \mathrm{p}\)
```

$$
\begin{array}{ll}
\mathrm{CH}_{3} \mathrm{COO}^{-} & +\underset{ }{\mathrm{H}^{+}} \rightarrow \mathrm{CH}_{3} \mathrm{COOH} ; \\
& \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl} \\
& \mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
\substack{\text { очень слабый } \\
\text { злектролит }}
\end{array}
$$

При отсутствии ионов, которые образуют осадок, газ или слабый электролит, реакция является обратимой (точнее, нет реакции, идущей до конца):

$$
\begin{gathered}
\mathrm{KNO}_{\mathbf{p}}+\underset{\mathbf{p}}{\mathrm{NaCl}} \rightleftarrows \underset{\mathbf{p}}{\mathrm{KCl}}+\underset{\mathbf{p}}{\mathrm{NaNO}_{\mathbf{3}}} \\
\mathrm{K}^{+}+\mathrm{NO}_{\mathbf{3}}^{-}+\mathrm{Na}^{+}+\underset{\mathrm{Cl}^{-}}{ } \rightleftarrows \mathrm{K}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}
\end{gathered}
$$

В табл. 30 и 31 приведены качественные реакции на некоторые катионы и анионы (эта информация может оказаться полезной при выполнении лабораторных работ на занятиях в химической лаборатории).

Качественвые реакции на некоторые катионы

Качественные реакции на некоторые анноны

Анион	Реактив	Наблюдаемая реакция
Cl^{-} Br^{-} I^{-}	Нитрат сере$6 \mathrm{pa} \mathrm{Ag}{ }^{+}$ Нитрат сере$6 \mathrm{pa} \mathrm{Ag}{ }^{+}$ Нитрат серебра Ag ${ }^{+}$	$\mathrm{Cl}^{-}+\mathrm{Ag}^{+} \rightarrow \mathrm{AgCl} \downarrow$ белый творожвстыд осадок $\mathrm{Br}^{-}+\mathrm{Ag}^{+} \rightarrow \underset{\substack{\text { желтоватвы } \\ \text { осадок }}}{\mathrm{AgBr} \downarrow}$ $\mathbf{I}^{-}+\mathrm{Ag}^{+} \rightarrow \underset{\substack{\text { желтты } \\ \text { осадок }}}{\mathrm{AgI} \downarrow}$
$\mathrm{CO}_{3}{ }^{\text {- }}$	Растворы кислот \mathbf{H}^{+} $\mathrm{Ba}(\mathrm{OH})_{2}$	$\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$ выделение газа без запаха, вызывающего помутнение гидроксида $\stackrel{\text { 6ария: }}{\mathrm{CO}_{3}^{2-}}+\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \underset{\text { 6eлाг৷ осадок }}{\rightarrow \mathrm{BaCO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}}$
\mathbf{S}^{2-}	Нитрат свинца (II) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{S}^{2-}+\mathrm{Pb}^{2+} \rightarrow \underset{\text { черный осадок }}{\mathrm{PbS} \downarrow}$
$\mathrm{SO}_{4}{ }^{\text {- }}$	Соли бария Ba^{2+}	$\mathrm{SO}_{4}{ }^{2-}+\mathrm{Ba}^{2+} \underset{\text { 6елып̆ осадок }}{\rightarrow} \mathrm{BaSO}_{4} \downarrow$
$\mathrm{NO}_{3}{ }^{-}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4} \text { (конац) }+ \\ +\mathrm{Cu} \underline{t^{\circ}} \end{gathered}$	$\mathrm{Cu}+\mathrm{NO}_{3}^{--}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2} \uparrow$ выделение газа бурого цвета
$\mathrm{PO}_{4}{ }^{3-}$	Нитрат сере$6 \mathrm{pa} \mathrm{Ag}{ }^{+}$	
$\mathrm{CrO}_{4}{ }^{2-}$	Соли бария	$\mathrm{CrO}_{4}{ }^{2-}+\mathrm{Ba}^{2+} \underset{\text { желтый осадок }}{\mathrm{BaCrO}_{4} \downarrow}$
SCN^{-}	Нитрат сереธра, сульфат меди (II)	$\mathrm{Ag}^{+}+\mathrm{SCN}^{-} \rightarrow \underset{\substack{\text { белого цвета } \\ \mathrm{Cu}^{2+}+2 \mathrm{SCN}^{-}} \underset{\substack{\text { осапок } \\ \mathrm{AgSSN} \\ \text { оесадок } \\ \text { дерного цвета }}}{\mathrm{Cu}(\mathrm{SCN})_{2} \downarrow}}{ }$
$\mathrm{NO}_{2}{ }^{-}$	Иодид калия KI в кислой среде	$2 \mathrm{I}^{-}+2 \mathrm{NO}_{2}{ }^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}^{\uparrow}$ I_{2} окрашивает раствор в бурый цвет (или образуется темно-серый осадок)
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Хлорид желе32 (III) FeCl_{3}	$\begin{gathered} 3 \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Fe}^{3+} \rightarrow \underset{\substack{3+\\ \text { крaço.-6ypuä } \\ \text { pactrop }}}{\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}} \\ \mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O} \mathrm{t}^{\circ} \\ \rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{CH}_{3} \mathrm{COO} \downarrow+2 \mathrm{CH}_{3} \mathrm{COOH} \end{gathered}$ осадок осповной соли

8.12. ПиССоцџАция водЫ. водородНЬІ̆ ПоказатЕль

Ионное произведение воды (K_{B}) - это произведение концентраций ионов водорода [H^{+}] и гидроксид-ионов $\left[\mathrm{OH}^{-}\right]: K_{\mathrm{B}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-7} \cdot 10^{-7}=10^{-14}$.
$\left[\mathrm{H}^{+}\right]=10^{-7}$ моль $/ \boldsymbol{\text { л }}-$ нейтральный раствор, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$; $\left[\mathrm{H}^{+}\right]>10^{-7}$ моль $/$ л - кислый раствор, $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$; $\left[\mathrm{H}^{+}\right]<10^{-7}$ моль/л - щелочной раствор, $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$.

Водородный показатель (pH) -десятичный логарифм концентрации водородных ионов, взятый с обратным знаком:

$$
\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right], \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} .
$$

$\mathrm{pH}=7$ - нейтральная среда;
$\mathrm{pOH}=7$ - нейтральная среда;
$\mathrm{pH}<7$ - кислая среда;
$\mathrm{pOH}>7$ - кислая среда;
$\mathrm{pH}>7$ - щелочная среда.
$\mathrm{pOH}<7$ - щелочная среда.
Наглядно взаимосвязь между [H^{+}], pH и реакцией раствора можно выразить такой схемой (см. также табл. 32):

таблица 32
Измевевие цвета ивдикатора при действии кислот и щелочей

Индикатор	Цвет индикатора в среде		
	киссой $(p H<7)$	нейтральной $(p H=7)$	щелочной (pH
Лакмус	Красный	Фиолетовый	Синий
Метилоранж	Розовый	Оранжевый	Желтый
Фенолфталеин	Бесцветный	Бесцветный	Малиновый

8.13. ГидРОлиЗ СОЛЕУ

Гидролиз - реакция обменного разложения соли водой, в результате которого образуется слабый электролит.

Гидролиз соли зависит от ее природы. В табл. 33 приведены возможные случаи гидролиза солей в зависимости от их состава.

таблича 33
Гидролиз солей, образованных сильными и слабыми кислотами и основаниями

Соли, образованные слабым основанием и сильной кислотой
a) $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
Полные ионные и молекулярные уравнения: $\begin{gathered} \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}+\mathrm{HOH} \rightleftarrows \mathrm{NH}_{4} \mathrm{OH}+\underline{\mathrm{H}}^{+}+\mathrm{Cl}^{-} \\ \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HOH} \rightleftarrows \underset{\alpha=1,3 \%}{\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}} \end{gathered}$
б) $\mathrm{ZnCl}_{2} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Cl}^{-}$
В растворе в обоих случаях - (а) и (б) - накапливаются ионы H^{+}, значит, среда кислая, $\mathrm{pH}<7$, индикатор лакмус окрашивается в красный цвет. Гидролиз ведет к образованию слабого основания (или основной соли), растворы таких солей проявляют кислую реакцию

Соли, образованные сильным основаннем и слабой кислотой
a) $\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ $\mathrm{Na}^{+}+\underset{\sim}{\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \underset{\alpha=1,3 \%}{\mathrm{CH}_{3} \mathrm{COOH}}+\mathrm{Na}^{+}+\underline{\mathrm{OH}}^{-}}$
Полные ионные и молекулярные уравнения: $\begin{gathered} \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \\ \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \end{gathered}$
б) $\mathrm{K}_{2} \mathrm{CO}_{3} \rightleftarrows 2 \mathrm{~K}^{+}+\mathrm{CO}_{3}{ }^{2-}$ $\underbrace{2 \mathrm{~K}^{+}}_{*}+\underbrace{\mathrm{COH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+2 \mathrm{~K}^{+}+\mathrm{OH}^{-}}_{\mathrm{HO}_{3}^{2-}}$
Полные ионные и молекулярные уравнения: $\begin{gathered} 2 \mathrm{~K}^{+}+\mathrm{CO}_{3}^{2-}+\mathrm{HOH} \rightleftarrows \mathrm{~K}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{K}^{+}+\underline{\mathrm{OH}}^{-} \\ \mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{HOH} \rightleftarrows \mathrm{KHCO}_{3}+\mathrm{KOH} . \end{gathered}$ В обоих случаях - (а) и (б) - накапливаются ионы OH^{-}, значит, среда щелочная, $\mathrm{pH}>7$, индикатор фенолфталеин окрашивается в малиновый цвет, а метилоранж - в желтый. Гидролиз ведет к образованию слабой кислоты (или кислой соли), растворы таких солей проявляют щелочную реакцию
Соли, образованные слабым основанием и слабой кислотой
$\begin{gathered} \mathrm{CH}_{3} \mathrm{COONH}_{4} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \\ \underbrace{\mathrm{NH}_{4}^{+}}_{4}+\underbrace{\mathrm{CH}_{3} \mathrm{COO}^{-}}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \end{gathered}$

Полные ионные и молекулярные уравнения: $\begin{gathered} \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \\ \mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{HOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\underset{\alpha=1,3 \%}{\mathrm{NH}_{4} \mathrm{OH}} \underset{\alpha=1,3 \%}{ } \end{gathered}$ Так как $\alpha\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\alpha\left(\mathrm{NH}_{4} \mathrm{OH}\right)$, то среда нейтральная, $\mathrm{pH}=7$
$\begin{gathered} \text { б) } \mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{2}^{-} \\ \mathrm{NH}_{4}^{+}+\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HNO}_{2} \\ +\quad \mathrm{HOH} \end{gathered}$
Полные ионные и молекулярные уравнения: $\begin{gathered} \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{2}{ }^{-}+\mathrm{HOH} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HNO}_{2} \\ \mathrm{NH}_{4} \mathrm{NO}_{2}+\mathrm{HOH} \rightleftarrows \underset{\alpha=1,3 \%}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{\alpha=6,4 \%}{\mathrm{HNO}_{2}} \\ \alpha\left(\mathrm{HNO}_{2}\right)>\alpha\left(\mathrm{NH}_{4} \mathrm{OH}\right) . \end{gathered}$ Среда слабокислая, $\mathrm{pH}<7$, индикатор лакмус окрашивается в слабо-красный цвет
в) Гидролиз некоторых солей может идти до конца: $\mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}_{2} \mathrm{~S} \uparrow$ В этом случае образуются нерастворимое вещество и газ, которые уходят нз сферы химической реакции, поэтому реакция практическн необратима, а значит, такне соли невозможио получить в растворе

Соли, образованные сильным основанием и сильной кислотой, гидролизу не подвергаются.

Количественно процесс гидролиза солей можно выразить степенью гидролиза $\beta=[\mathrm{C}]_{\text {гидр }} /[\mathrm{C}]_{\text {раств }} \cdot 100 \%$, где $[\mathrm{C}]_{\text {гидр }}$ - число гидролизованных молекул, $[\mathrm{C}]_{\text {раств }}$ - общее число растворенных молекул. Степень гидролиза зависит от химической природы образующихся при гидролизе кислоты или основания и будет тем больше, чем слабее кислота и основание при прочих равных условиях. Например, для солей, образованных слабой кислотой и слабым основанием, значения β могут составлять от 0,01\% до 99% : $\beta\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=0,01 \%, \beta(\mathrm{KCN})=3,7 \% ; \beta\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right]=77 \%$; $\beta\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}\right]=\mathbf{9 9} \%$.

9. OKHCJKTEJbHOВОССТАНОВИТЕЛЬНЫIE РЕАКЦИИ

9.1. ХАРАКТЕРНСТНКА И ТНПЫ ОХИСЛИТЕЛЬНО-ВОССТАНОВГТЕЛЬНЫХ РЕАКЦИЙ

Окислительно-восстановительные реакции (ОВР)

 это реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ. Процессы, происходящие в них, и типы OBP отражены в табл. 34 и 35.таблица 34
Характеристика окислительно-восстановительных реакций

Наименование процесса	Примерь	Характернье особенности
Окисление процесс отдачи электронов атомом, молекулой или иоңом Восстановители - атомы, молекулы или ионы, отдающие электроны	$\begin{gathered} \mathrm{Al}^{0}-3 \bar{e} \rightarrow \mathrm{Al}^{3+}, \quad \mathrm{Fe}^{2+}-\bar{e} \rightarrow \mathrm{Fe}^{3+}, \\ \mathrm{H}_{2}{ }^{0}-2 \bar{e} \rightarrow 2 \mathrm{H}^{+}, \quad 2 \mathrm{Cl}^{-}-2 \bar{e} \rightarrow \mathrm{Cl}_{2}, \\ \text { здесь } \mathrm{Al}^{0}, \mathrm{Fe}^{2+}, \mathrm{H}_{2}{ }^{0}, \mathrm{Cl}^{-}-\text {восста- } \\ \text { новители. } \\ \mathrm{B} \text { реакциях } \mathrm{Zn}_{0}^{0}+\stackrel{+2}{\mathrm{Cu}} \mathrm{SO}_{4} \rightarrow \\ \rightarrow+\mathrm{ZnSO}_{4}+\mathrm{Cu}_{0}^{0} \\ \text { и } \mathrm{Zn}^{0}-2 \bar{e} \rightarrow \stackrel{+2}{\mathrm{Zn}} \\ \text { реакция окисления) } \\ \mathrm{Zn}^{0}-\text { восстановитель } \end{gathered}$	В процессе окисления восстановитель окисляется, и степень окисления атомов повышается
Восстановле- ние - процесс присоединения электронов атомом, молекулой или иоНОМ Окислители - атомы, молекулы или ионы, присоединяющие электроны	$\begin{gathered} \mathrm{S}^{0+2} \bar{e} \rightarrow \mathrm{~S}^{-2}, \quad \mathrm{Cl}_{2}+2 \bar{e} \rightarrow 2 \mathrm{Cl}^{-} \\ \mathrm{Fe}^{3+}+\bar{e} \rightarrow \mathrm{Fe}^{3+} \end{gathered}$ здесь $\mathrm{S}^{0}, \mathrm{Cl}_{2}, \mathrm{Fe}^{3+}$ - ожислители. В реакциях $\begin{aligned} \mathrm{Zn}^{0}+\mathrm{CuSO}_{4} & \rightarrow \mathrm{ZnSO}_{4}^{+2}+\mathrm{Cu}^{0} \text { и } \\ \mathrm{Cu}^{+2} & +2 \bar{e} \rightarrow \mathrm{Cu}^{0} \end{aligned}$ (реакция восстановления) $\mathrm{Cu}^{+2} \text { - окислитель }$	В процессе восстановления окислитель восстанавливается, и степень окисления атомов понижается

Типы окислительно-восстановительных реакций

Tun OBP	Примеры	Отличительная особенность
Внутримо-лекулярные		Реакции идут с изменением степени окисления разных атомов в одной молекуле
Межмолекулярные	$\begin{gathered} \mathrm{Cu}^{0}+\stackrel{+2}{\mathrm{Hg}}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \stackrel{+2}{\mathrm{Cu}}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Hg}^{0}, \\ \stackrel{+3}{\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}^{0} \rightarrow 2 \mathrm{Fe}^{0}+3 \stackrel{+1}{\mathrm{H}_{2}} \mathrm{O},} \\ 2 \mathrm{H}_{2} \stackrel{-2}{\mathrm{~S}}+\mathrm{H}_{2} \stackrel{+4}{\mathrm{~S}} \mathrm{O}_{3} \rightarrow 3 \mathrm{~S}^{0}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Реакции идут с пзменением степени окисления атомов в молекулах разных веществ
Само-окис-ления-само восстановления (диспро-порционирования)	$\begin{gathered} \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}^{0} \rightleftarrows \mathrm{H} \stackrel{-1}{\mathrm{Cl}}+\mathrm{H} \stackrel{+1}{\mathrm{Cl}} \mathrm{O} \\ 3 \mathrm{~K}_{2} \stackrel{+6}{\mathrm{Mn}^{\mathrm{O}} \mathrm{O}_{4}}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{~K} \stackrel{+7}{\mathrm{Mn}} \mathrm{O}_{4}+ \\ +\stackrel{+4}{\mathrm{Mn}} \mathrm{O}_{2}+4 \mathrm{KOH}, \\ \stackrel{0}{\mathrm{C}}_{2}+2 \mathrm{KOH} \rightarrow \mathrm{~K} \stackrel{-1}{\mathrm{Cl}}+\mathrm{K} \stackrel{+1}{\mathrm{Cl}} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	Реакции идут с изменением степени окисления одинаковых атомов в молекуле одного и того же вещества

Окислительно-восстановительные реакции широко распространены в природе и являются основой жизнедеятельности живых организмов, поскольку с ними связаны обмен веществ, процессы дыхания, брожения, гниения, фотосинтез в зеленых растениях (см. с. 24). Широкое примение ОВР получили в технике, например в процессах коррозии металлов, горения различных топлив, металлургических, электролитических и других процессах. Наиболее эффективно OBP используются в электролизе. Этим способом получают многие металлы (щелочные, щелочноземельные, алюминий), а также такие неметаллы, как водород, кислород, хлор.

9.2. COCTABMEHME YPABHCHIT OBP (метод элехтроввого балавса)

$\begin{gathered} \text { Правила } \\ \text { составления } \\ \text { ураєнений ОВР } \\ \hline \end{gathered}$	Примеры
1. Зашисать схему химической реакщии	
2. Определить элементы, атомы	$\begin{aligned} & \text { (восстановитель) } \\ & 1 \end{aligned} \left\lvert\, \begin{aligned} & 2 \mathrm{I}-2 \bar{e} \rightarrow \\ & \text { (процесс окисления) }(4,5,6) \end{aligned}\right.$
которых изменяют свои степени окисления	$\text { (окислитель) } \quad 2 \left\lvert\, \begin{aligned} & \mathrm{Fe}^{3+}+\bar{e} \rightarrow \mathrm{Fe}^{2+} \\ & \text { (процесс восстановления) } \end{aligned}\right.$
в ходе реакци	$2 \mathrm{KI}+2 \mathrm{FeCl}_{3}=\mathrm{I}_{2}+2 \mathrm{FeCl}_{2}+2 \mathrm{KCl} \quad(6,7)$
3. Подчеркнуть символы элементов, атомы которых изменянот окия	II. $\underline{\mathrm{Al}}^{0}+\underline{\mathrm{O}}_{2}^{0} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}^{-2}(1,2,3)$
4. Составить уравнения электронного баланса, но-	$\begin{array}{l\|l} \text { (восстановитель) } 4 & \begin{array}{l} \mathrm{Al}^{0}-3 \bar{e} \\ \text { (процесс окисления) }(4,5,6) \end{array} \mathrm{Al}^{3+} \end{array}$
казать окислитель и восстановитель	$\begin{array}{l\|l\|} \text { (окислитель) } & 3 \end{array} \begin{aligned} & \mathrm{O}_{2}^{0}+4 \bar{e} \\ & \text { (процесс восстановления) } \end{aligned}$
5. Уравнять число электронов, отданных восстано	$4 \mathrm{Al}+3 \mathrm{O}_{2}=2 \mathrm{Al}_{2} \mathrm{O}_{3} \quad(6,7)$
вителем, и число электронов присоединенных окислителем	
	III. $\underline{\mathrm{Mg}}+\mathrm{H}_{\underline{\mathrm{N}} \mathrm{O}_{3}(\mathbf{p}) \rightarrow \mathbf{M g}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{N}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}, ~}^{\text {(}}$ (восстановитель) $5 \mid \mathrm{Mg}^{0}-2 \bar{e} \rightarrow \mathrm{Mg}^{2+}$
коэффицденты при восстановителе и окислителе	(окислитель) 1(процесс окисления) $2 \mathrm{~N}^{+5}+10 \bar{e} \rightarrow \mathrm{~N}^{0}$
	(окнлие) ${ }^{\text {(процесс восстановления) }}$
7. Зацисать окончательное уоавнение ОВР	$5 \mathrm{Mg}^{0}+12 \mathrm{HNO}_{3}(\mathrm{p}) \rightarrow 5 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{N}_{2}^{0} \uparrow+6 \mathrm{H}_{2} \mathrm{O}$

Проверить правильность составленного уравнения OBP по числу атомов одного и того же элемента в левой и правой частях OBP. Уравнение OBP составлено верно, если число атомов всех элементов в правой и левой частях уравнения равны между собой.

9.3. BAEREITIEE BOCCTAHOBETEJK K OXICHKTENT

В периодах периодической системы Д. И. Менделеева слева направо усиливается окислительная способность атомов элементов и уменьшается их восстановительная способность; в главных подгруппах сверху вниз усиливается восстановительная способность атомов элементов и уменьшается их окислительная способность. Наиболее активными восстановителями являются металлы I и II групп, наиболее активными окислителями - неметаллы VI и VII групп (кислород, озон, галогены). Основные восстановители и окислители приведены ниже:

Восстановители	Окислители
Металлы, водород, углерод, $\mathrm{CO}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2,}, \mathrm{H}_{2} \mathrm{SO}_{3}$ и соли сернистой кислоты	Галогены; $\mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Kn}_{3}, \mathrm{KMnO}_{4}$, Соли хромовых кислот $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ и $\mathrm{K}_{2} \mathrm{CrO}_{4}$
$\begin{gathered} \text { Бескислородные кислоты: } \mathrm{HI}, \\ \mathrm{HBr}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S} \\ \mathrm{Coли}^{\mathrm{SnCl}_{2} \mathrm{FeSO}_{4}, \mathrm{MnSO}_{4},} \\ \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \end{gathered}$	Кислоты $\mathrm{HNO}_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ (конц.), $\mathrm{H}_{2} \mathrm{SeO}_{4}, \mathrm{HClO}_{4}, \mathrm{HMnO}_{4}$
Соединения азота: HNO_{2}, $\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{4}$ (гидразин), NO	$\begin{gathered} \text { Оксиды металлов: } \\ \mathrm{PbO}_{2}, \mathrm{CrO}_{3}, \mathrm{MnO}_{2} \\ \mathrm{Ag}_{2} \mathrm{O}, \\ \hline \end{gathered}$
Фосфористая кислота $\mathrm{H}_{3} \mathrm{PO}_{3}$	Ионы благородных металлов: $\mathrm{Ag}^{+}, \mathrm{Au}^{3+}$ и др.
Органические соединения: спирты, альдегиды, муравьиная и щавелевая кислоты, глюкоза	Хлорид железа (III) FeCl_{3} Гипохлориты, хлораты п перхлораты «Царская водка" (смесь концентрированных азотной и соляной кислот)
Катод при электролизе	Анод при электролизе

В металлургии наибольшее применение находят следующие восстановители: углерод и оксид углерода (II), активные металлы и водород, используемые для восстановления металлов из их оксидов и хлоридов:

$$
\begin{aligned}
& \mathrm{FeO}+\mathrm{C} \xrightarrow{\mathrm{t}} \mathrm{Fe}+\mathrm{CO} \uparrow: \mathrm{CuO}+\mathrm{CO} \xrightarrow{\mathrm{t}^{\prime}} \mathrm{Cu}+\mathrm{CO}_{2} ; \\
& \mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \xrightarrow{\mathrm{TiCl}_{4}+4 \mathrm{Na} \xrightarrow[\rightarrow]{\mathrm{t}^{\prime}} \mathrm{Ti}+4 \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr} ; \mathrm{GeO}_{2}+2 \mathrm{H}_{2} ;} \stackrel{\mathrm{t}}{\rightarrow} \mathrm{Ge}+2 \mathrm{H}_{2} \mathrm{O} . \\
& \text { Водородом восстанавливают такжке вольфрам и молиб- } \\
& \text { ден из их оксидов. }
\end{aligned}
$$

9.4. OXHCIMTEJBHME CBOLGTBA ABOTHOF RKCJOTM

$\mathrm{HNO}_{8}(\kappa), \mathrm{HNO}_{8}(\mathrm{p}), \mathrm{HNO}_{3}(\mathrm{op})$ - азотная квслота концентрированная, разбавлениая п очень разбавленная

Приближенные схемы реакций:

$$
\begin{equation*}
10 \mathrm{H} \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}(\mathrm{k})+4 \stackrel{0}{\mathrm{Ca}} \rightarrow 4 \stackrel{+2}{\mathrm{Ca}}\left(\mathrm{NO}_{3}\right)_{2}+\stackrel{+1}{\mathrm{~N}_{2}} \mathrm{O} \uparrow+5 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

$4 \mathrm{H}_{\mathrm{N}}^{+5} \mathrm{O}_{3}(\mathrm{k})+\stackrel{0}{\mathrm{C}} \rightarrow \stackrel{+2}{\mathrm{C}}\left(\mathrm{NO}_{3}\right)_{2}+2 \stackrel{+4}{\mathrm{~N}} \mathrm{O}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}$
$5 \mathrm{H}_{\mathrm{N}} \mathrm{O}_{3}(\mathrm{\kappa})+\stackrel{0}{\mathrm{P}} \rightarrow \mathrm{H}_{3} \stackrel{+5}{\mathrm{P}} \mathrm{O}_{4}+5 \stackrel{+4}{\mathrm{~N}} \mathrm{O}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$12 \mathrm{H} \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}(\mathrm{p})+5 \stackrel{0}{\mathrm{M}} \mathrm{g} \rightarrow 5 \stackrel{+2}{\mathrm{M}} \mathrm{g}\left(\mathrm{NO}_{3}\right)_{2}+\stackrel{0}{\mathrm{~N}} 2 \uparrow+6 \mathrm{H}_{2} \mathrm{O}$
$8 \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}(\mathrm{p})+3 \stackrel{0}{\mathrm{Cu}} \rightarrow 3 \stackrel{+2}{\mathrm{Cu}}\left(\mathrm{NO}_{3}\right)_{2}+2 \stackrel{+2}{\mathrm{~N}} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}$

$5 \mathrm{H} \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}(\mathrm{p})+3 \stackrel{0}{\mathrm{P}}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{3} \stackrel{+5}{\mathrm{P}} \mathrm{O}_{4}+5 \stackrel{+2}{\mathrm{~N}} \mathrm{O}$

$$
\begin{equation*}
30 \mathrm{H} \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}(\mathrm{op})+8 \stackrel{0}{\mathrm{Al}} \rightarrow 8 \stackrel{+3}{\mathrm{Al}}\left(\mathrm{NO}_{3}\right)_{3}+3 \stackrel{-}{\mathrm{N}}^{-3} \mathrm{H}_{4} \mathrm{NO}_{3}+9 \mathrm{H}_{2} \mathrm{O} \tag{7}
\end{equation*}
$$

9.5. окиСЛИТЕЕЛЬНЫЕ СВоЙСТВА СЕРНО кМСЛоТЫ

Схема протекания реакций:

1) $\mathrm{H}_{2}{\stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}(\text { к })+\text { неактивный металл } \rightarrow \mathrm{SO}_{0}^{+6}}_{\mathrm{SO}_{2}}+$ соль + вода
2) $\mathrm{H}_{2} \stackrel{+6}{\mathrm{~S}_{\mathrm{O}}} \underset{4}{ }($ к $)+$ активный металл $\begin{aligned} & \pi \mathrm{S}+\text { соль }+ \text { вода } \\ & \searrow \mathrm{H}_{2} \stackrel{-2}{\mathrm{~S}}+\text { соль }+ \text { вода }\end{aligned}$
3) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (к) + неметалл

активность восстановителя увеличивается
4) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p})+$ неактивный металл \rightarrow
5) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p})+$ активный металл \rightarrow соль $+\mathrm{H}_{2}$

Примеры:

1) $2 \mathrm{H}_{2}{\underset{\mathrm{t}}{+6} \mathrm{O}}_{4}(\mathrm{k})+\stackrel{0}{\mathrm{Cu}} \xrightarrow[0]{\mathrm{t}^{\circ}}{ }_{\mathrm{S}}^{\mathrm{+4}} \mathrm{O}_{2}+\stackrel{+2}{+2} \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
2) $4 \mathrm{H}_{2} \mathrm{SO}_{4}(\kappa)+3 \mathrm{Zn} \rightarrow \mathrm{S} \downarrow+3 \mathrm{Zn} \mathrm{SO}_{+2}+4 \mathrm{H}_{2} \mathrm{O}$

$\left.\begin{gathered}\text { (восстановитель) } \mathrm{Mg}^{0}-2 \bar{e} \rightarrow \mathrm{Mg}^{+2} \text { (процесс окисления) } \\ \text { (окислитель) } \stackrel{+6}{\mathrm{~S}}+8 \bar{e} \rightarrow \stackrel{-2}{\mathrm{~S}} \text { (процесс восстановления) }\end{gathered} \right\rvert\, \begin{aligned} & \times 4 \\ & \times 1\end{aligned}$
3) $2 \mathrm{H}_{2}{\stackrel{+6}{+6} \mathrm{O}_{4}(\mathrm{k})+\underset{0}{\mathrm{C}} \rightarrow 2 \mathrm{~S}_{+4}^{+4} \mathrm{O}_{2} \uparrow+\stackrel{+4}{\mathrm{C}} \mathrm{O}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}, ~}_{\text {+ }}$

(восстановитель) $\stackrel{0}{\mathrm{P}}-8 \bar{e} \rightarrow+\stackrel{+5}{\mathrm{P}}$ (процесс окисления)		
(окислитель)	$\stackrel{+6}{\mathrm{~S}}+2 \bar{e} \rightarrow \mathrm{+4}$ (процесс восстановления)	$\times 2$
$\times 5$		

4) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p})+\mathrm{Cu}_{0}{ }^{+}$
5) $\mathrm{H}_{2}^{+1} \mathrm{SO}_{4}(\mathrm{p})+. \mathrm{Zn}_{\mathrm{O}}^{\mathrm{O}} \rightarrow \mathrm{Zn} \mathrm{SO}_{4}^{+2}+\mathrm{H}_{2}^{0} \uparrow$
(восстановитель) $\mathrm{Zn}^{0}-2 \bar{e} \rightarrow \mathrm{Zn}^{2+}$ (процесс окисления)
(окислитель) $2 \mathrm{H}^{+1}+2 \bar{e} \rightarrow \mathrm{H}_{2}^{0}$ (процесс восстановления)

9.6. BIMYHLE CPEДЫ HA XAPAKTEP IPOTEKAHIM OBP

$\rightarrow 2 \stackrel{+2}{\mathrm{Mn}} \mathrm{SO}_{4}+5 \mathrm{Na}_{2} \stackrel{+6}{\mathrm{~S}_{\mathrm{O}}} \mathrm{O}_{4}+\stackrel{\text { cрееа }}{\mathrm{K}_{2} \mathrm{SO}_{4}}+3 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~K}^{+7} \mathrm{Mn}_{4}+3 \mathrm{Na}_{2} \stackrel{+4}{\mathrm{~S}} \mathrm{O}_{3}+\underset{\text { среда }}{\mathrm{H}_{2} \mathrm{O}} \rightarrow 2 \stackrel{+4}{\mathrm{Mn}} \mathrm{O}_{2} \downarrow+3 \mathrm{Na}_{2}{\stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}}_{+2 \mathrm{KOH}}$

$2 \mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{MnO}_{4}^{2-}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{K}_{2} \stackrel{+6}{\mathrm{Cr}_{2}} \mathrm{O}_{7}+3 \mathrm{H}_{2} \stackrel{-2}{\mathrm{~S}}+\underset{\text { cpera }}{4 \mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \stackrel{+3}{\mathrm{Cr}_{2}}\left(\mathrm{SO}_{4}\right)_{3}+3 \stackrel{0}{\mathrm{~S}} \downarrow+\mathrm{K}_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~K}_{2} \stackrel{+6}{\mathrm{Cr}} \mathrm{O}_{4}+3 \mathrm{Na}_{2} \stackrel{+4}{\mathrm{~S}} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
$\rightarrow \stackrel{+3}{\mathrm{Cr}_{2}}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Na}_{2} \stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$

$\stackrel{+3}{\mathrm{Cr}_{2} \mathrm{O}_{3}}+3 \mathrm{~K} \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}+4 \underset{\text { cреда }}{\mathrm{KOH}} \rightarrow 2 \mathrm{~K}_{2} \stackrel{+6}{\mathrm{Cr}} \mathrm{O}_{4}+3 \mathrm{~K} \stackrel{+3}{\mathrm{~N}} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

9.7. ЭЛЕКТРОЛИЗ

Электролиз - это окислительно-восстановительный процесс, протекающий под действием электрического тока на электродах, помещенных в раствор или расплав электролита.

При электролизе на катоде происходит восстановление (Э ${ }^{+n}+n \bar{e} \rightarrow Э^{0}$, где Э - элемент), а на аноде - окисление ($Э^{-n}-n \bar{e} \rightarrow Э^{0}$). Характер идущих при электролизе процессов зависит от состава электролита, материала электродов, режима электролиза и др. Различают электролиз расплавов и растворов электролитов.

Электролиз расплава электролита

Рис. 34
Схема установки для электролиза расплава NaCl

Катод - восстановитель; анод окислитель (графит, уголь, металлы Pt, Au - инертный электрод; $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Ni}$, Cr - растворимый электрод)

Процесс электролиза расплава NaCl (рис. 34) идет по следующей схеме:

$$
\underset{\text { (расплав) }}{\mathrm{NaCl}} \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Катод (-):	$\mathrm{Na}^{+}+\bar{e} \rightarrow \stackrel{0}{\mathrm{Na}}$			
Анод (+):	$2 \mathrm{Cl}^{-}-2 \bar{e} \rightarrow \mathrm{Cl}_{2}$	$	$	2
:---				
$2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2} \uparrow$				
$\underset{\text { расплав }}{2 \mathrm{NaCl}} \xrightarrow{\text { алектролиз }} 2 \mathrm{Na}+\mathrm{Cl}_{2} \uparrow$				

Схемы электролиза водных растворов некоторых солей

1. Электролиз раствора NaCl (инертные электроды). (водный раствор) $\mathrm{NaCl} \rightleftarrows \mathrm{Na}^{+}+\mathrm{Cl}^{-}$

Катод (-): $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-}$
Анод (+): $2 \mathrm{Cl}-2 \bar{e}=2 \mathrm{Cl} \uparrow$
Суммарная реакция: $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-}$, или $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { әлектролиз }} \mathrm{H}_{2} \uparrow+\mathrm{Cl}_{2} \uparrow+2 \mathrm{NaOH}$.

В растворе остаются ионы Na^{+}и OH^{-}.
2. Электролиз раствора $\mathrm{K}_{2} \mathrm{SO}_{4}$ (инертные электроды).
(водный раствор) $\mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftarrows 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$ \dagger
(Pt) Катод $(-)-2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-}$ (+) Анод (Pt)
$\frac{\mathrm{Na}^{+}, \mathrm{H}_{2} \mathrm{O}}{\substack{2 \mathrm{H}_{2} \mathrm{O}+2 \bar{e} \rightarrow \mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-} \\ \text {(восстановление) }}} \mathrm{H}_{2} \mathrm{O} \frac{\mathrm{SO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{O}}{\substack{2 \mathrm{H}_{2} \mathrm{O}-4 \bar{e} \rightarrow \mathrm{O}_{2} \uparrow+4 \mathrm{H}^{+} \\ \text {(окисление) }}}$

В прикатодном пространстве собираются ионы Na^{+} и OH^{-}, т. е. образуется щелочь, а около анода среда становится кислой за счет образования серной кислоты. Суммарное уравнение:

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}-4 \bar{e} \rightarrow \mathrm{O}_{2} \uparrow+4 \mathrm{H}^{+} \\
& 2 \mathrm{H}_{2} \mathrm{O}+2 \bar{e}=\mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-}
\end{aligned}
$$

$6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { электролиз }} 2 \mathrm{H}_{2} \uparrow+\mathrm{O}_{2} \uparrow+4 \mathrm{OH}^{-}+4 \mathrm{H}^{+}$

Если катодное и анодное пространство не разделены перегородкой, то ионы $\mathrm{H}+$ и OH - образуют воду, и тогда уравнение имеет вид: $2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { электролиз }} 2 \mathrm{H}_{2} \uparrow+\mathrm{O}_{2} \uparrow$.

Таким образом, электролиз водного раствора сульфата натрия сводится к элетролизу воды, при этом растворенная соль остается неизменной.
3. Электролиз раствора ZnSO_{4} (инертные электроды). (водный раствор) $\mathrm{ZnSO}_{4} \rightarrow \mathbf{2 \mathrm { Zn } ^ { 2 + }}+\mathrm{SO}_{4}^{2-}$!

$\overline{\mathrm{Zn}^{2+}+2 \bar{e} \rightarrow \mathrm{Zn}^{0}}$ (восстановление)		$\begin{aligned} & \rightarrow \mathrm{O}_{2} \uparrow \\ & \text { ление } \end{aligned}$

$2 \mathrm{H}_{2} \mathrm{O}+2 \bar{e} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
(восстановление)
Суммарное уравнение реакции:
$\mathrm{Zn}^{+2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { эпектро.из }} \mathrm{Zn}^{0}+\mathrm{H}_{2} \uparrow+\mathrm{O}_{2} \uparrow+2 \mathrm{H}^{+}$, или
$\mathrm{ZnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { леекрроиа }} \mathrm{Zn}+\mathrm{H}_{2} \uparrow+\mathrm{O}_{2} \uparrow+\mathrm{H}_{2} \mathrm{SO}_{4}$.
4. Электролиз раствора CuCl_{2} (растворимый медный анод).
(водный раствор) $\quad \mathrm{CuCl}_{2 \rightleftarrows} \mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-}$
Катод $(-) \longrightarrow-\mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow(+)$ Анод
$\frac{\mathrm{Cu}^{2+}, \mathrm{H}_{2} \mathrm{O}}{\mathrm{Cu}^{2+}+2 \bar{e}=\mathrm{Cu}^{0}}$
(восстановление)
$\mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}^{2+}+2 \bar{e}=\mathrm{Cu}^{0}$
$\mathrm{Cu}^{0}-2 \bar{e}=\mathrm{Cu}^{2+}$
(окисление)
Суммарное уравнение реакции:

$$
\mathrm{CuCl}_{2}+\underset{\text { анод }}{\mathrm{Cu}^{2+}+\mathrm{Cu}^{0} \xrightarrow{\text { алектролиз } \mathrm{Cu}^{0}+\mathrm{Cu}^{2+}} \mathrm{CuCl}_{2}+\underset{\text { на катоде }}{\mathrm{Cu}^{0}} \text {. }}
$$

Таким образом, электролиз водного раствора CuCl_{2} сводится к растворению анода и осаждению меди на катоде.

Окислительные свойства катионов

$$
\begin{gathered}
\mathrm{Li}^{+}, \mathbf{R b}^{+}, \mathbf{K}^{+}, \mathrm{Ba}^{2+}, \ldots, \\
\mathbf{M g}^{2+}, \mathrm{Al}^{3+}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \ldots, \\
\mathrm{Cu}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Ag}^{+}, \mathrm{Au}^{3+}
\end{gathered}
$$

Усиливается окислительная способность ионов

Происходит

 восстановление воды: $2 \mathrm{H}_{2} \mathrm{O}+2^{\bar{e}} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$ $\left(2 \mathrm{H}^{+}+2^{\bar{e}} \rightarrow \mathrm{H}_{2}\right)$Катионы металлов остаются в растворе

Происходит восстановление катионов металлов:

$$
\begin{aligned}
\mathrm{Me}^{\mathrm{n}+}+n \bar{e} & \rightarrow \mathrm{Me}^{0}, \\
\mathrm{Cu}^{2+}+2 \bar{e} & \rightarrow \mathrm{Cu}^{0}
\end{aligned}
$$

Ряд анионов, окисляющихся на нерастворимом (инертном) аноде

$$
\begin{aligned}
& \mathrm{S}^{2-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-} \\
& \mathrm{OH}^{-}
\end{aligned}
$$

Восстановительнье свойства ослабевают

Происходит
окисление анионов:

$$
\begin{aligned}
& \mathbf{S}^{2-}-2 \bar{e} \rightarrow \mathrm{~S}^{0} \\
& 2 \mathrm{Br}^{-}-2^{\bar{e}} \rightarrow \mathrm{Br}_{2}{ }^{0} \\
& 2 \mathrm{Cl}^{-}-22^{\bar{e}} \rightarrow \mathrm{Cl}_{2}{ }^{0}
\end{aligned}
$$

Происходит окисление воды:

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{O}-4 \bar{e} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2} \\
4 \mathrm{OH}^{-}-4^{\bar{e}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
\end{gathered}
$$

В растворе остаются анионы кислотных остатков

Законы Фарадея

Количества веществ, выделяющихся на электродах, подчиняются законам Фарадея.

1. При электролизе электролита количества веществ, выделяющихся на электродах, прямо пропорциональны количеству электричества, протекшему через электролизер.
2. При электролизе различных электролитов одинаковые количества электричества выделяют на электродах количества веществ, прямо пропорциональные их химическим эквивалентам*.

Масса металла m (в граммах), осаждающаяся на катоде, согласно законам Фарадея, может быть вычислена по формуле:

$$
m=\frac{\ni}{F} \cdot I \cdot \tau=\frac{\ni}{96500} \cdot q
$$

где Э - эквивалентная масса металла, г/моль,

$$
\left(\vartheta=\frac{M}{N(e)}\right),
$$

$N(e)$ - число электронов, участвующих в процессе окисления или восстановления 1 моль вещества на электроде; F - константа Фарадея ($F=96500$ Кл); I - сила тока, A; τ - продолжительность электролиза, $c ; q$ - число кулонов (А - с), соответствующее силе тока I и времени $\tau(q=I \cdot \tau)$.

[^10]
9.8. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Гальванический элемент - это прибор, который преобразует химическую энергию в электрическую.

Схема простейшего гальванического элемента Даниэля представлена на рис. 35.

Схематическое изображение медно-цинкового элемента: $\mathrm{Zn}^{0}\left|\mathrm{Zn}^{2+}\right| \mathrm{Cu}^{2+} \mid \mathrm{Cu}^{0}$. В такой записи одной чертой обозначается двойной электрический слой (рис. 37), которому соответствует электродный потенциал, а двойной чертой - электролитический ключ.

Гальванический элемент состоит из двух электродов, каждый из которых опущен в сосуд с соответствующим раствором соли: цинковый электрод погружен в раствор соли ZnSO_{4}, а медный электрод - в раствор CuSO_{4}. Сосуды соединены электролитическим мостиком, заполненным концентрированным раствором электролита (например, $\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ или KNO_{3}), который служит ионным проводником между двумя сосудами.

Рис. 35
Схема медно-цинкового гяльванического элемента:
\rightarrow путь электронов; $-\rightarrow$ путь ионов

Если электроды (Zn и Cu) соединить металлической проволокой, то электроны с Zn -электрода будут переходить к Сu-электроду и в цепи появится электрический ток, который можно зарегистрировать вольтметром. Суммарное уравнение реакции, идущей в элементе: $\mathrm{Zn}^{0}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}^{0}+\mathrm{Zn}^{2+}$. Электроны от анода (Zn), который является восстановителем и заряжен отрицательно, по внешней цепи переходят к катоду (Cu), который является окислителем и зарлжен положительно. На электродах идут электрохимические процессы ($\mathrm{Zn}^{0}-2 \bar{e} \rightarrow \mathrm{Zn}^{2+}$ и $\mathrm{Cu}^{2+}+2 \bar{e} \rightarrow \mathrm{Cu}^{0}$), и в растворе наблюдается направленное движение ионов.

Таким образом, в гальваническом элементе электрический ток возникает за счет окислительно-восстановительной реакции, и поэтому в принципе любая окислительно-восстановительная реакция может служить источником электрического тока, если она протекает в гальваническом элементе (см. рис. 35).

Электродвижущая сила (ЭДС) гальванического элемента ($E_{\text {ョ }}$) равна алгебраической сумме электродных потенциалов реакции окисления и реакции восстановления: $E_{\text {э }}=E_{\text {окасл }}-E_{\text {восст }}$.

$$
E_{\mathrm{\jmath}}^{0}=E_{\mathrm{k}}^{0}-E_{\mathrm{a}}^{0}
$$

E_{3}^{0} - стандартная ЭДС элемента;
E_{k}^{0} - стандартный электродный потенциал катода; E_{a}^{0} - стандартный электродный потенциал анода.

Для медно-цинкового элемента ЭДС при стандартных условиях (E_{3}^{0}) равна $1,1 \mathrm{~B}$:

$$
E_{\mathrm{Cu}-\mathrm{Zn}}^{0}=E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}-E_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=0,34-(-0,76)=1,1 \mathrm{~B} .
$$

К гальваническим элементам (ГЭ) относятся элемент Даниэля-Якоби, элемент Вестона и аккумуляторы. Гальванический элемент Вестона используют как источник эталонного напряжения при измерении ЭДС гальванических элементов.

Аккумуляторы предназначены для многократного использования и состоят из нескольких ГЭ, соединенных последовательно или параллельно. Наиболее распространенными аккумуляторами являются свинцовые $\mathrm{Pb}\left|\mathrm{H}_{2} \mathrm{SO}_{4}\right| \mathrm{PbO}_{2} \mid \mathrm{Pb}$, железо-никелевые $\mathrm{Fe}|\mathrm{KOH}| \mathrm{NiOOH} \mid \mathrm{Ni}$ и кадмий-никелевые $\mathrm{Cd}|\mathrm{KOH}| \mathrm{NiOOH} \mid \mathrm{Ni}$ (вертикальные черточки обозначают границы между электродами и электролитами). В свинцовых кислотных аккумуляторах положительным полюсом является электрод из PbO_{2} (в виде пасты, наполняет ячейки свинцовой решетки), отрицательным полюсом служит свинцовый электрод, а электролитом - $20-30 \%$-й водный раствор серной кислоты.

Процесс генерирования тока (разрядка аккумулятора) в свинцовом аккумуляторе можно выразить уравнением реакции, идущей справа налево (разрядка аккумулятора): $\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \underset{\text { раррядава }}{\rightleftarrows} 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$. При зарядке аккумулятора реакция иддет в обратном направлении. На отрицательном полюсе: $\mathrm{Pb} \rightleftharpoons \mathrm{Pb}^{2+}+2 e$; образующиеся ионы Pb^{2+} оссаждаются на аноде в виде PbSO_{4}. На положительном полюсе: $\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 \bar{e} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$; образующиеся ионы Pb^{2+} осаждаются на катоде в виде PbSO_{4}. О степени разрядки аккумулятора судят по концентрации $\mathrm{H}_{2} \mathrm{SO}_{4}$, замеряя ее плотность.

Вщелочном аккумуляторе отрицательным полюсом служит железная или кадмиевая пластина, положительный полюс изготовлен из никеля, заполненного $\mathrm{Ni}_{2} \mathrm{O}_{3}$, а в качестве электролита используется 20%-й раствор КОН. Процесс зарядки и разрядки (генерация тока) происходят в соответствии с уравнением: $\mathrm{Fe}+\mathrm{Ni}_{2} \mathrm{O}_{3} \stackrel{\text { рарряаке }}{\rightleftarrows} \mathrm{Fe}(\mathrm{OH})_{2}+$ $+2 \mathrm{Ni}(\mathrm{OH})_{2}$. На отрицательном полюсеса идут реакции: $\mathrm{Fe} \rightleftarrows \mathrm{Fe}^{2+}+2 e ; \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}$. На положительном полюсе: $\mathrm{N}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}+2 e \rightleftarrows 2 \mathrm{Ni}^{2+}+6 \mathrm{OH}^{-} ; \mathrm{Ni}^{2+}+$ $+2 \mathrm{OH}^{-} \rightleftarrows \mathrm{Ni}(\mathrm{OH})_{2}$.

9.9. ЭЛЕКТРОДНЫЕ ПОТЕНЩИАЛЫ К ЗЛЕKTPOXHMHYECRIE IPOLECCH B PACTBOPAX

Для определения направления и полноты протекания OBP в водных растворах обычно пользуются значениями электродных потенциалов.

Электродный потенциал (E) - это разность потенциалов между металлом и раствором его соли, в который он погружен.

Наличие электродного потенциала объясняется тем, что при погружении металла в воду под действием полярных молекул воды ионы металла начинают гидратироваться и переходить в раствор. При этом металл заряжается отрицательно, поскольку в нем остаются электроны, а раствор - положительно (рис. 36), и между металлом и раствором устанавливается окислительновосстановительное равновесие:

Рнс. 36
Схемя образования заряда на цинковой пластинке
Если металл опускать не в воду, а в раствор его соли, то активные металлы в растворах своих солей заряжаются отрицательно, а неактивные - положительно (рис. 37), на границе раздела металл - раствор образуется двойной электрический слой ($\mathrm{Me}^{0} / \mathrm{Me}^{\mathrm{n}}$) и возникает разность по-

Рис. 37
Образование двойного электрического слоя при погружении металла в раствор его собственной соли A - активный металл; B - малоактивный металл

тенциалов между металлом и жидкой фазой (электродный потенциал), который непосредственно измерить невозможно. ІІоэтому измеряют относительный потенциал, называемый стандартным потенциалом.

Стандартный электродный потенциал (E^{0}) металла - это разность потенциалов между металлом, опущенным в раствор его соли с концентрацией 1 моль/л, и нормальным водородным электродом при давлении 101,3 кПа и температуре $298 \mathrm{~K}\left(+25^{\circ} \mathrm{C}\right)$.

Водородный электрод состоит из рыхлой платиновой пластинки, насыщенной водородом при давлении 101,3 кПа и температуре 298 K и опущенной в 1 М раствор серной кислоты.

Потенциал стандартного водородного электрода принят равным нулю при температуре 298 K :

$$
\left(E_{\frac{1}{2} \mathrm{H}_{2} / \mathbf{H}^{+}}^{0}=0\right)
$$

Схема гальванического элемента для измерения стандартного электродного потенциала цинкового электрода $E_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}$ показана на рис. 38. Измерения проводятся при стандартных условиях $\left(T=298 \mathrm{~K}, P_{\mathrm{H}_{2}}=101,3\right.$ кПа, концентрация ионов H^{+}и Zn^{2+} равна 1 моль/л).

Prc. 38
Схема гальванического элемента, состолщего из цинкового и водородного электродов

Величина стандартного электродного потенциала E^{0} характеризует восстановительные свойства металла: для активных металлов $E^{0}<0$, для неактивных $E^{0}>0$. Если расположить все металлы в порядке увеличения значений E^{0}, образуется ряд стандартных электродных потенциалов металлов (табл. 36), который известен также как электрохимический ряд напряжений металлов. Электрохимический ряд напряжений можно использовать для определения (прогнозирования) последовательности восстановления ионов металлов в процессе электролиза и определения возможности протекания OBP замещения в водной среде.

Зависимость электродного потенциала окислительновосстановительной системы от концентрации окисленной и восстановительной форм вещества можно выразить уравнением Нернста:

$$
E=E^{0}-\frac{R T}{n F} \ln \frac{C_{\text {oкксе. }}}{C_{\text {вocor. }}},
$$

где E - электронный потенциал при одномолярной концентрации раствора; $R=8,314$ Дж/(К•моль) - универсальная газовая постоянная; T - температура в градусах Кельвина; n - число электронов, принимающих участие в OBP; F - константа Фарадея ($F=96500$ Кл).

Для водородного электрода уравнение Нернста имеет вид: $E=-0,059 \mathrm{pH}$.

таблица 36
Стяндартные электродвые потепциалы при $25^{\circ} \mathrm{C}$

Электрод	Электродный процесс	Потенциал, В
Металлы		
$\mathrm{Li}+/ \mathrm{Li}$	$\mathrm{Li}^{+}+1 \bar{e} \overrightarrow{\mathrm{e}} \mathrm{Li}$	-3,02
K ${ }^{+} \mathrm{K}$	$\mathrm{K}^{+}+1 \bar{e} \underset{ }{\text { e }}$	-2,92
$\mathrm{Ca}^{2+} / \mathrm{Ca}$	$\mathrm{Ca}^{2+}+2 \bar{e} \underset{\leftarrow}{\leftrightarrows} \mathrm{Ca}$	-2,84
$\mathrm{Na}^{+} / \mathrm{Na}$	$\mathrm{Na}^{+}+1 \bar{e} \stackrel{\mathrm{e}}{ } \stackrel{\mathrm{Na}}{ }$	-2,71
$\mathrm{Mg}^{2+} / \mathrm{Mg}$	$\mathrm{Mg}^{2+}+2 \bar{e} \leftrightarrows \mathrm{Mg}$	-2,38
$\mathrm{Al}^{3+} / \mathrm{Al}$	$\mathrm{Al}^{3+}+3 \bar{e} \leftrightarrows \mathrm{Al}$	-1,66
$\mathrm{Mn}^{2+} / \mathrm{Mn}$	$\mathrm{Mn}^{2+}+2 \bar{e} \underset{\leftarrow}{\rightleftarrows} \mathrm{Mn}$	-1,05
$\mathrm{Zn}^{2+} / \mathrm{Zn}$	$\mathrm{Zn}^{2+}+2 \bar{e}$ ¢ Zn	-0,763
$\mathrm{Cr}^{3} / \mathrm{Cr}$	$\mathrm{Cr}^{+3+3 \bar{e}} \underset{\leftarrow}{\text { cr }} \mathrm{Cr}$	-0,74
$\mathrm{Fe}^{2+}{ }^{\text {Fe }}$	$\mathrm{Fe}^{2+}+2 \bar{e} \leftrightarrows \mathrm{Fe}$	-0,441
$\mathrm{Co}^{2+} / \mathrm{Co}$	$\mathrm{Co}^{2+}+2 \bar{e}$ ¢ ${ }^{\text {c }}$	-0,277
$\mathrm{Ni}^{2+} / \mathrm{Ni}$	$\mathrm{Ni}^{2+}+2 \bar{e} \leftrightarrows \mathrm{Ni}$	-0,23
$\mathrm{Sn}^{2+} / \mathrm{Sn}$	$\mathrm{Sn}^{2+}+2 \bar{e} \rightleftarrows \mathrm{Sn}$	-0,136
$\mathrm{Pb}^{2+} / \mathrm{Pb}$	$\mathrm{Pb}^{2+}+2 \bar{e} \leftrightarrows \mathrm{~Pb}$	-0,126
$\mathrm{Fe}^{3+} / \mathrm{Fe}$	$\mathrm{Fe}^{3+}+3 \bar{e}$ 㐌 Fe	-0,036
$2 \mathrm{H}^{+} / \mathrm{H}_{2}$	$2 \mathrm{H}^{+}+2 \bar{e} \leftrightarrows \mathrm{H}_{2}$	$\pm 0,000$
$\mathrm{Cu}^{2+} / \mathrm{Cu}$	$\mathrm{Cu}^{2+}+2 \bar{e} \underset{\leftarrow}{\text { en }} \mathrm{Cu}$	+0,34
$\mathrm{Hg}^{2+} / \mathrm{Hg}$	$\mathrm{Hg}^{2+}+2 \bar{e} \underset{\leftarrow}{\leftrightarrows} \mathrm{Hg}$	+0,70
$\mathrm{Hg}^{+} / \mathrm{Hg}$	$\mathrm{Hg}^{+}+1 \bar{e} \rightleftarrows \mathrm{Hg}$	+0,798
$\mathrm{Ag}^{+} / \mathrm{Ag}$	$\mathrm{Ag}^{+}+1 \bar{e} \rightleftarrows \mathrm{Ag}$	+0,799
$\mathrm{Pt}^{2+} / \mathrm{Pt}$	$\mathrm{Pt}^{2+}+2 \bar{e}$ e $\leftrightarrows \mathrm{Pt}$	+1,20
$\mathrm{Au}^{3+} / \mathrm{Au}$	$\mathrm{Au}^{3+}+3 \vec{e} \leftrightarrows \mathrm{Au}$	+1,50
$\mathrm{Au}^{+} / \mathrm{Au}$	$\mathrm{Au}^{+}+1 \vec{e} \rightleftarrows \mathrm{Au}$	+1,70
Неметаллы		
$\mathrm{Te} / \mathrm{Te}^{2-}$	$\mathrm{Te}+2 \bar{e} \rightleftarrows \mathrm{Te}^{2-}$	-1,14
$\mathrm{Se} / \mathrm{Se}^{2-}$	$\mathrm{Se}+2 \bar{e} \leftrightarrows \mathrm{Se}^{2-}$	-0,78
S/S ${ }^{\text {2- }}$	$\mathrm{S}+2 \bar{e} \underset{\leftarrow}{\leftrightarrows} \mathrm{~S}^{2-}$	-0,51
$\mathrm{I}_{2} / 2 \mathrm{I}^{-}$	$\mathrm{I}_{2}+2 \bar{e} \leftrightarrows 2 \mathrm{I}^{-}$	+0,536
$\mathrm{Br}_{2} / 2 \mathrm{Br}^{-}$	$\mathrm{Br}_{2}+2 \bar{e} \leftrightarrows 2 \mathrm{Br}^{-}$	+1,06
$\mathrm{Cl}_{2} 2 \mathrm{Cl}^{-}$	$\mathrm{Cl}_{2}+2 \bar{e} \underset{\leftarrow}{\leftrightarrows} 2 \mathrm{Cl}^{-}$	+1,358

10. OБЩИЕ CBOЙCTBA METAЛЛOB

Физические и химические свойства металлов отражены в табл. 37 и 38.

таблица 37
Фнзнческне свойства металлов

$\begin{aligned} & \text { O} \\ & \text { E } \\ & \text { 魅 } \\ & 0 \\ & 0 \end{aligned}$	Определение	Значения для некоторых металлов	Примечание
	Способность поверхности металла отражать световые лучи		In и Ag отражают свет лучше других металлов, поэтому применяются для изготовления зеркал
	Физическая величина, измеряемая отношением массы тела к его объему	$\rho<5000 \mathrm{\kappa r} / \mathrm{m}^{3}$ - легкие металлы: Li, Ca, $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$. $\rho>5000 \mathrm{kr} / \mathrm{m}^{3}$ - тяжелые металлы: Zn, Fe, $\mathrm{Ni}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Os}$	Самый легкий металл - литий: $\rho(\mathrm{Li})=$ $=530 \mathrm{kr} / \mathrm{M}^{3}$. Самый тяжелый - осмий: $\rho(0 \mathrm{O})=$ $=22600 \mathrm{kr} / \mathrm{m}^{3}$
	Способность (свойство) твердого тела сопротивляться пронисновению в него другого тела	Твердость некоторых металлов по шкале Mooca: $\begin{gathered} H(\mathrm{Na})=0,4 ; \\ H(\mathrm{Sn})=1,8 ; \\ H(\mathrm{Au})=2,5 ; \\ H(\mathrm{Al})=2,9 ; H(\mathrm{Fe})=4 ; \\ H(\mathrm{Ni})=5, H(\mathrm{Cr})=9 \end{gathered}$	Самые мягкие металлы: $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Na}$ (режутся ножом). Самый твердый - Cr (режет стекло)
	Способность тела изменять свою форму под действием внепних сил без разрушения	$\xrightarrow[\substack{\text { Уменьшение } \\ \text { пластичности }}]{\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{~Pb}, \mathrm{Zn}, \mathrm{Fe}}$	Из пластичного Au можно изготовить фольгу толшиной 0,003 мм

	Определение	Значения для некоторьхх металлов	Примечание
$\begin{gathered} \text { Tемпература } \\ \text { плавления } \\ \left(T_{n}\right),{ }^{\circ} \mathrm{C} \end{gathered}$	Температура, при которой осуществляется процесс перехода вещества из твердого состояния в жидкое	$T_{\text {пл }}>1000^{\circ} \mathrm{C} \text { - туго }$ плавкие металлы: $\mathrm{Au}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Pt}, \mathrm{Ta}$, $\mathrm{Nb}, \mathrm{Mo}, \mathrm{W}$. $T_{\text {ал }}<1000^{\circ} \mathrm{C}$ - легко- плавкие металлы: $\mathrm{Hg}, \mathrm{K}, \mathrm{Na}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Zn}$, $\mathrm{Mg}, \mathrm{Al}, \mathrm{Ca}$	Самая низкая $T_{\text {пи }}$ у ртути: $T_{\text {пл }}(\mathrm{Hg})=-39^{\circ} \mathrm{C},$ а самая высокая - $\begin{aligned} & \text { у вольфрама: } \\ & T_{\text {гл }}(\mathrm{W})=3410^{\circ} \mathrm{C} \end{aligned}$
	Способность тела передавать теплоту от более нагретых его частей к менее нагретым	$\xrightarrow[\text { Уменьшение } \lambda]{\text { Ag, } \mathrm{Cu}, \mathrm{Au}, \mathrm{Al}, \mathrm{W}, \mathrm{Fe}}$	
	Свойство вещества проводить электрический ток (обусловлено наличием в нем свободних электроНов или понов)	$\xrightarrow[\text { Уменьшение } \sigma]{\mathrm{Ag}, \mathrm{Cu}, \mathrm{Au}, \mathrm{Al}, \mathrm{W}, \mathrm{Fe}}$	При нагревании σ уменьша. ется, так как усиливается колебательное движение атомов и ионов в узлах решетки и затрудняется движение электронов

Связь атомов в металлических кристаллах обусловлена наличием электронов, которые обладают значительной свободой движения в кристаллической решетке, образуемой положительными ионами металла (см. рис. 15, с. 85). Это обеспечивает высокую теплопроводность и электропроводность металлов.

Мвогие эксплуатационные свойства металлов зависят от их структуры, определяемой условиями получения и последующей термической обработкой. Это создает возможность изменять свойства металлов в широких пределах и позволяет подразделять их на конструкционные, электротехнические, жаропрочные и другие материалы.

Химнческне свойства металлов

Ресгентья	Реакции	Примечание
Простые вещества	$\begin{gathered} \mathrm{Li}(\mathrm{~K}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Ba})+\mathrm{O}_{2} \rightarrow \mathrm{Li}_{2} \mathrm{O}\left(\mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O},\right. \\ \mathrm{CaO}, \mathrm{BaO}) \text { при комнатной температуре } \\ 2 \mathrm{Cu}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CuO}, 2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{FeCl}_{3}, \\ \mathrm{Zn}+\mathrm{S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{ZnS}, 3 \mathrm{Mg}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Mg}_{3} \mathrm{~N}_{2}, \\ 4 \mathrm{Al}+3 \mathrm{C} \xrightarrow[\rightarrow]{\mathfrak{t}^{\circ}} \mathrm{Al}_{4} \mathrm{C}_{3}, \\ 3 \mathrm{Ca}+2 \mathrm{P} \rightarrow \mathrm{Ca}_{3} \mathrm{P}_{2}, \mathrm{Ca}+\mathrm{H}_{2} \rightarrow \mathrm{CaH}_{2} \end{gathered}$	$\mathrm{Li}, \mathrm{K}, \mathrm{Ba}, \mathrm{Ca}$, Na окнсляются при обычных условиях, Cu, Hg - при нагревании; $\mathrm{Ag}, \mathrm{Pt}, \mathrm{Au} \boldsymbol{н е}$ окисляются
Сложные вещества (вода, кис. лоты, соли) $\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \\ \text { и } \mathrm{HNO}_{3}(\mathrm{k}) \\ \text { (конщентри- } \\ \text { рованные } \\ \text { кислоты) } \end{gathered}$	$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow$ (металлы групыы I A и Ca, Sr и Ba) $\begin{gathered} \mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p}) \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \uparrow, \\ \mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p}) \rightarrow \\ \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \uparrow \end{gathered}$	$\mathrm{Li}, \mathrm{K}, \mathrm{Ba}, \mathrm{Ca}$, Na, Sr реагируют с $\mathrm{H}_{2} \mathrm{O}$ при обычнных условиях; Mg, $\mathrm{Al}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Fe}$, Ni реагируют с парами $\mathrm{H}_{2} \mathrm{O}$; $\mathrm{Sn}, \mathrm{Pb}, \mathrm{Cu}, \mathrm{Hg}$, $\mathrm{Ag}, \mathrm{Pt}, \mathrm{Au}$ не реагируют с $\mathrm{H}_{2} \mathrm{O}$ при нагревании
$\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \\ \text { и НNO } \\ \text { (конщентри- } \\ \text { рованные } \\ \text { кислоты) } \end{gathered}$	$\begin{gathered} \mathrm{Fe}+4 \mathrm{HNO}_{3}(\mathrm{p}) \underset{\mathbf{N}^{+5} \rightarrow \mathrm{~N}^{+2}}{\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NO} \uparrow+2 \mathrm{H}_{2} \mathrm{O},} \\ 5 \mathrm{Mg}+12 \mathrm{HNO}_{3}(\mathrm{p}) \rightarrow 5 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+ \\ +\mathrm{N}_{2} \uparrow+6 \mathrm{H}_{2} \mathrm{O}, \mathbf{N}^{+6} \rightarrow \mathrm{~N}^{0} \\ 4 \mathrm{Ca}+10 \mathrm{HNO}_{3}(\mathrm{op})^{\star} \rightarrow 4 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+ \\ +\mathrm{NH}_{4} \mathrm{NO}_{3}+3 \mathrm{H}_{2} \mathbf{O}, \mathbf{N}^{+6} \rightarrow \mathrm{~N}^{-3} \end{gathered}$	

* (op) - очень разбавленный раствор

Реагенть	Реакции	Примечание
Растворы солей	$\mathrm{Zn}+\mathrm{CuCl}_{2} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{Cu} \downarrow$ (более активный металл выгтесняет из раствора соли менее активный металл) $\mathrm{Ba}+\mathrm{CuCl}_{2} \rightarrow ?$ p $\text { a) } \mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow$ б) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CuCl}_{2} \rightarrow \mathrm{BaCl}_{2}+\mathrm{Cu}(\mathrm{OH})_{2} \downarrow$ p в) $\mathrm{Cu}(\mathrm{OH})_{2}=\mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}$ r) $\mathrm{Ba}+\mathrm{CuCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $\rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \downarrow+\mathrm{H}_{2} \uparrow+\mathrm{BaCl}_{2}$ (суммарная реакция $\mathrm{Ba}+$ раствор соли) д) $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$	Так реагируют с водными растворами солей очень активные металлы (Li, Na, K, Rb, $\mathrm{Cs}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) a) и б) - это стадии одной реакдии

Восстановительная способность простых веществ понижается $\mathrm{Li}, \mathrm{K}, \mathrm{Ca}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Pb},\left(\mathrm{H}_{2}\right), \mathrm{Cu}, \mathrm{Ag}, \mathrm{Hg}, \mathrm{Au}$
$\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Pb}^{2+},\left(2 \mathrm{H}^{+}\right), \mathrm{Cu}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}^{2+}, \mathrm{Au}^{2+}$
Окислительная способность зидратированных ионов усиливается

По сходным химическим свойствам все металлы подразделяются на щелочные, щелочноземельные, переходные, платиновые и благородные.

К щелочным металлам относятся металлы группы IA периодической системы: литий, натрий, калий, рубидий, цезий, франций.

Щелочноземельные металлы - это металлы группы II A периодической системы, кроме бериллия.

Переходные металлы (переходные элементы) - это группа химических элементов, в атомах которых происходит заполнение d - и f-подуровней. Всего таких элементов 58. В это число входят лантаноиды и актиноиды.

Платиновыми металлами называют шесть металлов VIII B - рутений, родий, палладий, осмий, иридий, платина.

К благородным металлам относят химически стойкие металлы - золото, серебро, включая и металлы платиновой группы.

10.2. пOPP03HД METAIJOB М METOДЫ ЗАщцТТ

Коррозия металлов - это процесс их химического разрушения под действием окружающей среды (табл. 39). Коррозия уничтожает $1 / 3$ массы металлов, получаемых ежегодно в мире. Методы защиты от коррозии рассмотрены в табл. 40.

Очень опасен такой вид коррозии, как межкристаллитная коррозия, связанная с усиленной коррозией границ зерен в сплавах. Этот вид коррозии металла наблюдается обычно в сварных швах.

Различают также щелевую и контактную коррозию, возникновение которых связано с конструктивными особенностями металлических изделий.

Коррозия металлов ускоряется под воздействием таких эксплуатационных факторов, как трение, радиация, высокая скорость потока среды. В зависимости от характера среды различают такие виды коррозии металлов в химически активных средах, как газовая коррозия, (окисление металла газообразными окислителями: кислородом воздуха, СОи др.), атмосферная коррозия (коррозия металлов в атмосферных условиях), почвенная коррозия (коррозия металлов в почве), биокоррозия (разрушение металлов продуктами жизнеделтельности некоторых микроорганизмов), морская коррозия (коррозия металлов в морской воде), коррозия в топливе (коррозия металлов, находящихся в зоне горения топлива) и др.

[^11]коррозин металлов
Схема коррозионнозо процесса

Методы защиты металлов

Memod	Схема реализации
Катодная защита	Схема катодной защиты от коррозии
Металлургический	Введение в состав стали в процессе ее плавки легирующих элементов: $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Al}, \mathrm{Mn}, \mathrm{Si}, \mathrm{V}, \mathrm{W}$
Нанесение металлических, оксидных и органических покрытий	Анодвое покрытие (динкование). Катодное покрытие (лужение - покрытие оловом), хромирование и др. Оксидирование (погружение железа в щелочь с окислителем). Анодирование в гальванических ваннах. Покраска и лакировка

Один из основных видов защиты химической аппаратуры от воздействия кислот и щелочей - нанесение резиновых покрытий (гуммирование). Такое покрытие в благоприятных условиях сохраняет свои защитные свойства до семи лет.

Из неорганических поверхностных покрытий на железе и его сплавах применяют фосфатные пленки.

Для получения пластмассовых покрытий используют винилпласт (толщиной $0,5-1$ мм), пластикат ($1-3$ мм),

от коррозии

Описание принципа действия	области применения
На векотором расстоянии от трубопровода в землю зары- вается идущий параллельно ему магниевый анод, который образует с трубопроводом гальваническую пару	Защита подземных стальных трубопроводов и металличе- ских емкостей. Так реализо- вана защита стального тру- бопровода (диаметр 50 см), проложжепного по дву океана и служащего для сбрасы- вания сточных вод г. Лос- Анджелеса (США) в океан

пластифицированный поливинилхлорид (2-3мм). Эмалирование производят наплавлением на металлический материал (восновном сталь и чугун) прозрачных, бесцветных или окрашенных стекол одним или несколькими слоями (эмали).

Состав эмали для железа и стали (в процентах по массе): $50-60 \mathrm{SiO}_{2} ; 2-8 \mathrm{Al}_{2} \mathrm{O}_{3} ; 4-10 \mathrm{CaO} ; 12-30 \mathrm{Na}_{2} \mathrm{O} ; 0-30 \mathrm{Ba}_{2} \mathrm{O}_{3}$; $7-9 \mathrm{~F} ; 0,2-0,3 \mathrm{CoO}$ (или NiO).

10.3. ПОЛУЧ®\#ME METAJJOB НЗ РУД

Металлургия - это наука о промышленных способах получения металлов из руд. Базируется на реакциях окисления-восстановления. С помощью металлургии получают около 80 металлов и множество сплавов. Различают пиро-, гидро-, электрометаллургию, а также металло- и водородотермию (табл. 41).

Различают порошковую, цветную и черную металлургию. Порошковая металлургия - это отрасль металлургии, связанная с производством порошков и получением из них изделий с заданными свойствами.

таблица 41

Наиме. нование способа	Сущность cnocoba	Примерь	Примечание
	Получение металлов с помощью реакций восстановления, протекающих при высоких температурах	$\begin{gathered} \mathrm{Cu}_{2} \mathrm{O}+\mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Cu}+\mathrm{CO}, \\ \mathrm{Cu}_{2} \mathrm{O}+\mathrm{CO} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Cu}+\mathrm{CO}_{2} \\ \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \xrightarrow{\mathrm{t}^{\circ}} 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \\ 2 \mathrm{ZnS}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}, \\ \mathrm{ZnO}+\mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Zn}+\mathrm{CO} \end{gathered}$	Восстановление углем: получают металлы Cu, Zn, Cd, Ge, Sn, Pb идр.
	Восстановление металлов из их соединений друтими металлами, химически более активными. Процесс называется алюминотермией, если восстановителем является алюминий, и магнийтермией, если восстановителем является магний	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3} \\ & 3 \mathrm{MnO}_{2}+4 \mathrm{Al}^{\mathrm{t}^{\circ}} 3 \mathrm{Mn}+ \\ &+2 \mathrm{Al}_{2} \mathrm{O}_{3} \\ & \mathrm{TiCl}_{4}+2 \mathrm{Mg} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Ti}+2 \mathrm{MgCl}_{2} \end{aligned}$	По- лучают металлы Mn, Cr, Ti, W и др.

Цветная металлургия охватывает производство цветных металлов и их сплавов, начиная от добычи и переработки рудного сырья и заканчивая получением готовой продукции.

Черной металлургией называют отрасль металлургии, которая охватывает производство черных металлов, начиная от добычи и переработки рудного сырья и заканчивая получением чугуна, стали (см. раздел 15.2), ферросплавов, проката и некоторых изделий дальнейшего передела.

Существует также вакуумная металлургия, предусматривающая плавку и обработку металлов и сплавов в разреженной атмосфере.

Продолжение табл.
41

	Восстановление металлов из их оксидов водородом	$\begin{gathered} \mathrm{MoO}_{3}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Mo}+3 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{WO}_{3}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{W}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Получают металлы высокой чистоты
	Извлечение соединений металлов из руд с помощью различных реагентов в виде соединений, растворимыхх в воде, с последующей обработкой этих растворов для выделения металлов в свободном виде	$\begin{gathered} (\mathrm{CuOH})_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CuSO}_{4}+ \\ +3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow \\ \mathrm{CuSO}_{4}+\mathrm{Fe} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu} \downarrow \end{gathered}$	Получакт металлы Cu, Au, Ag, Zn, Cd, Mo, V
	Восстановление активных металлов из расплавленных хлоридов, оксидов илш гидроксидов с помощью электрического тока (электролиз)	$\begin{gathered} \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\ \text {(расплав) } \\ \text { Катод }(-) \mathrm{Na}^{+} \leftarrow \rightarrow \mathrm{Cl}^{-}(+) \text {Анод } \\ \mathrm{Na}^{+}+\bar{e} \rightarrow \mathrm{Na}^{0} 2 \mathrm{Cl}^{-}-2 \bar{e} \rightarrow \mathrm{Cl}^{0}{ }_{2} \\ \text { (восстановление) (окисление) } \end{gathered}$	Получают металлы K, Na , Ca, Al и др.

10.4. СпЛАВЫ

Сплавы - это системы, состоящие из двух и более металлов или металлов и неметаллов (табл. 42). Большой вклад в науку о сплавах внес И. С. Курнаков (1860-1941).

Среди сплавов на основе железа различают главным образом коррозионностойкие и магнитные. Коррозион-

Характеристика

Название сплавов	Cocmas	Способы получения
Стали	$\mathrm{Fe}+\mathrm{C}$ (до $1,7 \%$) + + легируюпиие добав. ки (Cr, Ni, Mo, W, Al, Mn) + металлургические примеси ($\mathrm{Si}, \mathrm{S}, \mathrm{P}$)	Переработка чугуна мартеновским и электротермическим способами, основанными на выжигании (окислении) углерода. Мартеновским способом получают 15\% стали, электротермическим стали, содержащие W, Мо идр.
Чугун	$\begin{aligned} & \mathrm{Fe}+\mathrm{C}(>2 \%)+\mathrm{Si}, \mathrm{Mn}, \\ & \mathrm{P}, \mathrm{~S} \end{aligned}$	Выплавка в доменных печах $\mathbf{~} 93 \% \mathrm{Fe}+4,5 \% \mathrm{C}+$ $+0,5-2 \% \mathrm{Si}, 1-3 \% \mathrm{Mn}$, $0,02-2 \%$ Р и до $0,08 \% \mathrm{~S}$)
Бронза оловянистая, свинцовая, кремнневая	$\begin{aligned} & \mathrm{Cu}+\mathrm{Sn} \\ & \mathrm{Cu}+\mathrm{Al} \\ & \mathrm{Cu}+\mathrm{Pb} \\ & \mathrm{Cu}+\mathrm{Si} \end{aligned}$	Сплавлением в специальных печах
Латунь	$\mathrm{Cu}+\mathrm{Zn}$	Сплавлением в специальных печах
Доралтомин	$\begin{aligned} & \mathrm{Al}(95 \%)+\mathrm{Mg}+ \\ & +\mathrm{Cu}+\mathrm{Mn} \end{aligned}$	То же
Нихром	$\mathrm{Ni}+\mathrm{Cr}+\mathrm{Fe}+\mathrm{Mn}$	Тоже
Силумин	$\begin{aligned} & 86-88 \% \mathrm{Al}+ \\ & +12-14 \% \mathrm{Si} \end{aligned}$	То же
Манганин	$\begin{aligned} & \mathrm{Cu}+\mathrm{Mn}(11-14 \%)+ \\ & +\mathrm{Ni}(2-4 \%) \end{aligned}$	То же
Монель. металл	$\begin{aligned} & \hline \mathrm{Ni}+\mathrm{Cu}(23-27 \%)+ \\ & +\mathrm{Fe}(2-3 \%)+\mathrm{Mn}(1-2 \%) \end{aligned}$	То же

ностойкие - это устойчивые к коррозии сплавы железа с содержанием в них не менее 12% хрома. Магнитные сплавы на основе железа, кобальта и никеля, обладающие высокой остаточной намагниченностью и используемые для изготовления магнитов.

11. METAЛJGI IPYIIIBI IA

11.1. OБЩАЯ XAPAKTEPYCTHKA

Основные сведення

Символ элемента	Li	Na
Латинское наввание	Lithium	Natrium
Русское наввание	Литий	Натрий
Год открытия	1817	1807
Авторы открытия	И. Арфведсон	Г. Дэви
Содержание в земной коре, массовая доля, $\%$	$6,5 \cdot 10^{-3}$	2,5

Атомные

Элемент	$L i$	$N a$
Атомный (порядковый) номер	3	11
Относительная атамная масса	6,941	22,990
Строение внеших электронных обо. лочек атомов		
Электронная формула валентного уровня	$\ldots 2 s^{1}$	$\ldots 3 s^{1}$
Сродство к электрону, зB	0,591	0,540
Электроотрицательность	0,97	1,01
Степень окисления	+1	+1

(S-3JEMEHTBI)

ЭЛEMEHTOB

таблица 43

K	$R b$	Cs	Fr
Kalium	Rubidium	Caesium	Francium
Калий	Рубидий	Цезий	Франций
1807	1861	1860	1939
Г. Дэви	Р. Бунзен, Р. Кирхгоф	Р. Вунзен, Р. Кирхгоф	М. Перей
$\sim 2,6$	1,5 $\cdot 10^{-2}$	$3,7 \cdot 10^{-4}$	-
KCl (сицьвин); $\mathrm{KCl} \cdot \mathrm{NaCl}$ (сильвинит); $\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]$ (калиевый полевой шпат, ортоклаз); $\mathrm{KCl} \cdot \mathrm{MgCl}_{2}$. $6 \mathrm{H}_{2} \mathrm{O}$ (карналлит) - содержит ся в растениях	В качестве изоморфной примеси в минералах калия сильвините и карналлите	$\begin{gathered} 4 \mathrm{Cs}_{2} \mathrm{O} \cdot 4 \mathrm{Al}_{2} \mathrm{O}_{3} \\ -18 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ \text { (поллуцит); } \\ \text { спутник } \\ \text { минералов } \\ \text { калия типа } \\ \text { (KСs) } \left.\mathrm{BF}{ }^{2}\right] \\ \text { (авогадрит) } \end{gathered}$	Продукт α-распада актиния: $\rightarrow \begin{gathered} { }_{89}^{227} \mathrm{Ac} \rightarrow \\ \rightarrow{ }_{87}^{223} \mathrm{Fr}+{ }_{2}^{4} \mathrm{He} \end{gathered}$

K	Rb	Cs	Fr
19	37	55	87
39,098	85,468	132,905	223,020
ns $\uparrow \mid$, где n (номер периода) $=2,3,4,5,6,7$			
$\ldots 4 s^{1}$	$\ldots 5{ }^{1}$	$\ldots 6{ }^{1}$	$\ldots 7{ }^{1}$
0,47	0,42	0,39	-
0,91	0,89	0,86	0,86
+1	+1	+1	+1

${ }_{77} \mathrm{Rb}-1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s^{1}$
${ }_{55} \mathrm{Cs}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 6 s^{1}$
${ }_{87} \mathrm{Fr}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{6} 7 s^{1}$

11.2. Kajinit hatpyil -

Основные свойства,

Физические свойства	Химические свойства
Калий и натрий - мягкие серебрастые металлы (режутся ножом); $\begin{gathered} \rho_{(\mathrm{K})}=860 \mathrm{kr} / \mathrm{m}^{3}, \\ T_{\text {nn }}(\mathrm{K})=63,7^{\circ} \mathrm{C} \\ \rho_{(\mathrm{N})}=970 \mathrm{kT} / \mathrm{m}^{3}, \\ T_{\text {nn }}(\mathrm{Na})=97,8^{\circ} \mathrm{C} . \end{gathered}$ Обладают высокой тецло- и электропроводностью, иластичностью; окрашивают пламя в характерные цвета: К - в бледнофиолетовый цвет, Na - в желтый цвет.	Калий и натрий - сильные восстановители. На воздухе очень активно реагируют с кислородом и парами воды, позтому иX хранят в запаянныхх сосудах или в керосине. Взаимодействие с проствми веществами (неметаллами): Взаимодействие со сложными веществами: $\begin{gathered} 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow \\ 2 \mathrm{Na}+\underset{\substack{\text { перокоссад } \\ \text { натрия }}}{\mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}} \\ 2 \mathrm{Na}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \uparrow \end{gathered}$

IPOCTBIE BEMECTBA

получение, примененне

Способь получения	Области применения

В промышленности К и Na получают электролизом расплавов их хлоридов и гидроксидов. При получении Na к расплаву NaCl добавляют соль NaF или CaF_{2} для снижения температуры расплава:

на катоде:

$$
2 \mathrm{Na}^{+}+2 \bar{e} \rightarrow 2 \mathrm{Na}^{0}
$$

на аноде:

При использовании раствора NaOH электролиз идет по схеме:

на катоде:
$4 \mathrm{Na}^{+}+4 \bar{e} \rightarrow 4 \mathrm{Na}^{0}$,
на аноде:
$4 \mathrm{OH}^{-}-4 \bar{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \uparrow$.
Аналогичным образом идет электролиз расплава KCl и раствора KOH

Расплавы K и Na используются в качестве теплоносителя в атомных реакторах к в авиационных двигателях. Пары Na используют в уличных люминесцентных светильниках. Металлический K и Na применяют для получения пероксида натрия $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ и супероксида калия $\left(\mathrm{KO}_{2}\right)$, которые используются в подводных лодках и космических кораблях для регенерации кислорода:

$$
\begin{gathered}
2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{CO}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \uparrow, \\
\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{KO}_{2}+2 \mathrm{CO}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}+ \\
+\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{O}_{2} \uparrow
\end{gathered}
$$

Na служит катализатором в производстве каучука.
В составе ряда соединений широко используются в качестве удобрений.

Например, KCl , минералыт
$\mathrm{K}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{MgSO}_{4}$ (ленгбейнит); $\mathrm{KCl} \cdot \mathrm{MgSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (каинит), содержаший $28-30 \% \mathrm{~K}_{2} \mathrm{O}$ и $8-10 \% \mathrm{MgO}$, не более 8% влаги.

Основные свойства,

Соединения	$\Phi_{\text {изические }}$ свойства	Химические свойства
$\mathrm{K}_{2} \mathrm{O}-$ оксид калия, $\mathrm{Na}_{2} \mathrm{O}$ оксъд натрия	Твердые вещества	Проявляют свойства основных оксидов: $\begin{aligned} & \mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH} \\ & \mathrm{~K}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{~K}_{2} \mathrm{O}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 2 \mathrm{KClO}_{4} \end{aligned}$
$\mathrm{Na}_{2} \mathrm{O}_{2}-$ пероксид натрия	Твердое кристаллическое вещество	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}, \\ & 2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{CO}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \end{aligned}$
KOH - гидроксид калия, NaOH гидроксид натрия (каустичесюая сода)	Белые кристаллические вещества (в виде гранул), легко растворяются в воде с выделением теплоты	KOH и NaOH называют едкими щелочами, так как они разъедают бумагу, кожу, ткани. В водных растворах KOH и NaOH проявляют все характерные свойства оснований (щелочей): $\begin{gathered} \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{KOH}+\mathrm{CO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ 6 \mathrm{KOH}+ \\ +\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4}+ \\ +2 \mathrm{Fe}(\mathrm{OH})_{3} \downarrow \\ 2 \mathrm{KOH}+ \\ \mathrm{ZnO} \rightarrow \mathrm{~K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{NaOH}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{NaAlO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$

MAMA M HATPMA

Способы получения	Области применения
Взаимодействие супероксида калия с калием:	
$\mathrm{KO}_{2}+3 \mathrm{~K} \stackrel{t^{\circ}}{ } 2 \mathrm{~K}_{2} \mathrm{O}$.	$\mathrm{K}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}$
Взаимодействие пероксида натрия с на-	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$

трием. $\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{Na} \xrightarrow{t^{\circ}} 2 \mathrm{Na}_{2} \mathrm{O}$.	
$\begin{gathered} 2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2} \\ \text { (сгорание натрия в кислороде) } \end{gathered}$	В смеси с KO_{2} для регенерации воздуха в подводных лодках и космических кораблях, отбеливание разных матеркалов
В промышленности KOH и NaOH получают электролизом растворов KCl и $\mathrm{NaCl}: 2 \mathrm{NaCl} \rightleftarrows 2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$.	KOH используется, главным образом, для получения жидкого мыла и стекла. NaOH применяется для про-
На катоде: $2 \mathrm{H}_{2} \mathrm{O}+2 \bar{e} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \uparrow$ на аноде: $2 \mathrm{Cl}^{-}-2 \bar{e} \rightarrow \mathrm{Cl}_{2} \uparrow$	изводства бумаги, искусственных тканей, мыла, для очистки нефтепроводов, в производстве искусственного
$2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[+\mathrm{Cl}_{9} \uparrow]{\text { әлектролия }} 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \uparrow+$	волокна, в щелочных аккумуляторах.

KOH - хороший адсорбент $\mathrm{H}_{2} \mathrm{~S}$ и CO_{2}, а также осупаюший агент.

Можно получить KOH и NaOH известковым методом:

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaOH}
\end{gathered}
$$

Соединения	Физические свойства	Химические свойства
$\mathrm{NaCl}-$ хлорид натрия $\mathrm{NaNO}_{3}-$ нитрат натрия (чилийская селитра) $\mathrm{Na}_{2} \mathrm{CO}_{3}-$ карбонат на- трия (сода) $\mathrm{NaHCO}_{3}-$ гидрокарбонат натрия (питве- вая сода) $\mathrm{Na}_{2} \mathrm{SO}_{4}-$ сульфат натрия, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}-$ глауберова соль KCl - хлорид калия KNO_{3} - нитрат калия (калийная селитра) $\mathrm{K}_{2} \mathrm{SO}_{4}$ - сульфат калия $\mathrm{K}_{2} \mathrm{CO}_{3}$ карбонат калия (noram)	Соли калия и натрия -кристаллические ионные вещества. Почти все они растворимы в воде	Соли калия и натрия проявляют характерные свойства средних солей: $\begin{gathered} 2 \mathrm{NaCl}_{(\mathrm{TB})}+\mathrm{H}_{2} \mathrm{SO}_{4}(\kappa) \rightarrow \\ \left.\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}^{\uparrow}\right) \\ \mathrm{KCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{KNO}_{3}++\mathrm{AgCl} \downarrow \\ \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+ \\ +\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow \\ \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}_{\leftarrow} \rightarrow \mathrm{KHCO}_{3}++\mathrm{KOH} \\ \mathrm{CO}_{3}^{2-+}+\mathrm{H}_{2} \mathrm{O}_{\leftarrow} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \\ (\text {cpeда щелочная, pH }>7)_{\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow}^{\rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaOH},} \\ \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4} \downarrow 2 \mathrm{KCl} \end{gathered}$

11.4. BROJOLHYECKAR POJB E+ M Na+

Калий важен для всех живых организмов. Он необходим для нормальной работы мышечных клеток и нервной системы животных и человека, в растениях способствует продессу фотосинтеза и стимулирует процесс прорастания семян. В организме человека при массе тела 80 кг содержится около 160 г калия (в крови, мышечной и костной тканях).

Способы получения	Области применения
Большинство солей калия и натрия добывается из природных минералов, важнейшими из которых являются: каменная соль (NaCl), глауберова соль $\left(\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$, криолит ($\mathrm{Na}_{3} \mathrm{AlF}_{6}$), сильвинит ($\mathrm{NaCl} \cdot \mathrm{KCl}$), карналлит $\left(\mathrm{KCl} \cdot \mathrm{MgCl}{ }_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$. Соли натрия содержатся также в морской и некоторых озерных водах	NaCl - сырье для получения Na , $\mathrm{NaOH}, \mathrm{Cl}_{2}, \mathrm{HCl}$; в пищевой промышленности - консервирование продуктов и приправа к пице; в медицине для приготовления физиологического раствора ($\sim 1 \%$-й раствор NaCl в $\mathrm{H}_{2} \mathrm{O}$). $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - для производства бумаги, мыла, стекла. NaHCO_{3} (питъевая сода) - в медицине, кулинарии, в производстве минеральных вод, в огнетушителях. $\mathrm{K}_{2} \mathrm{CO}_{3}$ - для получения жидкого мыла и стекла. $\mathrm{NaNO}_{3}, \mathrm{KNO}_{3}, \mathrm{KCl}, \mathrm{K}_{2} \mathrm{SO}_{4}$ - важнейшие калийные удобрения

Натрий также очень важен для большинства форм жизни, в том числе и для жизни человека. Ионы натрия обеспечивают поддержание водного режима организма. Раствор $\mathrm{NaCl}(0,85-0,9 \%-$ й), называемый физиологическим раствором, применяется для внутривенных вливаний при больших кровопотерях. Содержание натрия в организме человека при массе 70 кг составляет 100 г (в крови, мышечной и костной тканях).

12. ОЛЕMEHTBI FPYIIBI IIA

12.1. OSIMA XAPAKTEPYCTMRA

Основные сведения

Символ элемента	$B e$	Mg
Латинское название	Beryllium	Magnesium
Русское название	Бериллий	Магний
Год открытия	1798	1808
Авторы открытия	Л. Воклен	Г. Дэви
Содержсание в земной коре, массовая доля, \%	$6 \cdot 10^{-4}$	2,1
Основные природные соеди- нения	$\underset{\left(\underset{\text { (берилл), }}{\text { (фенакит) }} \underset{\mathrm{Be}_{2}}{3 \mathrm{BeO}} \cdot \mathrm{SiO}_{4}\right]^{2}}{6 \mathrm{SiO}_{2}}$	$2 \mathrm{MgO} \cdot \mathrm{SiO}_{2}$ (оливин), MgCO_{3} (магнезит), $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$ (доломит), $\mathrm{MgCl}_{2} \cdot \mathrm{KCl} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (карналлит)

Atominge

Элемент	$B e$	$M g$
Атомный (порядковый) номер	4	12
Относительная атомная масса	9,012	24,305
Строение внеиних электронньх оболочек атомов		
Электронная формула валентного уровня	$\ldots 2 s^{2} 2 p^{0}$	$\ldots 3 s^{2} 3 p^{0}$
Металлический радиус атома, ня .	0,112	0,160
Радиус иона Ме ${ }^{2+}$, нм	0,045	0,072
Первьй потенциал ионизации, эВ	9,32	7,65
Сродство к электрону, эВ	0,38	$-0,22$
Электроотрицательность	1,47	1,23
Степень окисления	+2	+2

Электронвые
ковфигурации
атомов в основном состоянии
${ }_{4} \mathrm{Be}-1 s^{2} 2 s^{2}$
${ }_{12} \mathrm{Mg}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
${ }_{20} \mathrm{Ca}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$

(S-ЭЛEMEHTBI)

3ЛEMEHTOB
таблица 47
об элементах

Ca	Sr	$B a$	Ra
Calcium	Strontium	Barium	Radium
Калњцй	Стронций	Барий	Радий
1808	1790	1774	1898
Г. Дэви	A. Крофорд	К. Шееле	М. Селодовская, Ж. Бемон
3,6	$4 \cdot 10^{-2}$	$5 \cdot 10^{-2}$	$1 \cdot 10^{-10}$
CaCO_{3} (кальцит), $\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$ (анортит), $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (гиис), $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$ (доломит), CaF_{2} - флюорит, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ - фосфорит, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, $\mathrm{OH})$ - апатит	$\begin{gathered} \mathrm{SrCO}_{3} \\ \text { (стронциа- } \\ \text { нит }^{2} \\ \mathrm{SrSO}_{4} \text { (це- } \\ \text { лестин) } \end{gathered}$	$\begin{gathered} \mathrm{BaCO}_{3} \\ \text { (витерит), } \\ \text { BaSO }_{4} \\ \text { (барит, } \\ \text { тяжелый } \\ \text { шпат) } \end{gathered}$	В составе урановых руд

таблица 48
характерпстнки

Ca	Sr	$B a$	$R a$
20	38	56	88
40,078	87,620	137,327	226,025
, где n (номер периода) $=2,3,4,5,6,7$			
$\ldots 4 s^{2} 4 p^{0}$... $5 s^{2} 5 p^{0}$	$\ldots 6 s^{2} 6 p^{0}$	$\ldots 7 s^{2} 7 p^{0}$
0,197	0,215	0,222	0,235
0,100	0,118	0,135	0,144
6,11	5,69	5,21	5,28
-1,93	-1,51	-0,48	-
1,04	0,99	0,97	0,97
+2	+2	+2	+2

${ }_{38} \mathrm{Sr}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s^{2}$
${ }_{68} \mathrm{Ba}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 6 s^{2}$
${ }_{88} \mathrm{Ra}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{8} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{6} 7 s^{2}$

12.2. КАЛЬЦУЙ' - IロРОСТОЕ ВЕЩГСТВ

таблица 49
Основные свойства, получение

Физические свойства

Серебристо-белый металл, $\rho=1550 \mathrm{kr} / \mathrm{m}^{3}, T_{\text {пл }}=839^{\circ} \mathrm{C}$, удельное электросопротивление 0,038 мкОм•м. Соединения Са окрашивают пламя в оранжево-красный цвет

Химические свойства
Взаимодействие с простыми веществами (неметаллами):

$$
\begin{gathered}
\mathrm{Ca}+\mathrm{H}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaH}_{2}-\text { гидрид кальция } \\
\mathrm{Ca}+2 \mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaC}_{2}-\text { карбид кальция } \\
3 \mathrm{Ca}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Ca}_{3} \mathrm{~N}_{2}-\text { нитрид кальция } \\
3 \mathrm{Ca}+2 \mathrm{P} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Ca}_{3} \mathrm{P}_{2}-\text { фосфид кальция } \\
2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} \text { - оксид кальция } \\
\mathrm{Ca}+\mathrm{Cl}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaCl}_{2}-\text { хлорид кальция }
\end{gathered}
$$

Взаимодействие со сложными веществами:

$$
\begin{gathered}
\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow \\
2 \mathrm{Ca}+\mathrm{CO}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CaO}+\mathrm{C} \\
2 \mathrm{Ca}+\mathrm{SiO}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Si}+2 \mathrm{CaO} \\
2 \mathrm{Ca}+\underset{\substack{\text { теграма } \\
\text { yрана }}}{\mathrm{UF}_{4}} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{U}+2 \mathrm{CaF}_{2}
\end{gathered}
$$

Способы получения

Электролиз расплава CaCl_{2} с добавлением CaF_{2} для снижения температуры плавления CaCl_{2}.

Метод электротермии:

$$
14 \mathrm{CaO}+6 \mathrm{Al} \xrightarrow{\mathbf{t}^{\circ}} 5 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Ca}
$$

12.3. СОЕДННЕНMЯ RAЛbЦMЯ

Химические свойства, полученне

Соединения	Химические свойства	Способы получения
$\left\|\begin{array}{c} \mathrm{CaO} \text { - ок- } \\ \text { сид кальция } \end{array}\right\|$	$\begin{gathered} \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2} \\ \mathrm{CaO}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{CaO}+\mathrm{SO}_{3} \rightarrow \mathrm{CaSO}_{4} \\ \mathrm{CaO}+3 \mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaC}_{2}+\mathrm{CO} \end{gathered}$	Прокаливанием известняка: $\mathrm{CaCO}_{3} \xrightarrow{\mathrm{t}^{\circ} \mathrm{CaO}+\mathrm{CO}_{2} \uparrow ~}$
$\mathrm{Ca}(\mathrm{OH})_{2}-$ гидроксид кальция	Обладает свойствами щелочей: $\begin{gathered} \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O} \\ 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{~K}_{3} \mathrm{PO}_{4} \rightarrow \\ \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow+6 \mathrm{KOH} \end{gathered}$	Взаимодействием CaO с водой: $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}{ }^{*}$
$\mathrm{Ca}_{3} \mathrm{~N}_{2}-$ нитрид кальция	$\mathrm{Ca}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+\underset{\text { амапиак }}{2 \mathrm{NH}_{3} \uparrow}$	Взаимодействием простых веществ: $3 \mathrm{Ca}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Ca}_{3} \mathrm{~N}_{2}$
$\mathrm{Ca}_{3} \mathrm{P}_{2}-$ фосфпд кальция	$\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+\underset{\text { фосфин }}{2 \mathrm{PH}_{3} \uparrow}$	Взаимодействием простых веществ: $3 \mathrm{Ca}+2 \mathbf{P} \xrightarrow{\mathbf{t}^{\circ}} \mathrm{Ca}_{3} \mathrm{P}_{2}$

[^12]Продолжение табл. 50

Соединения	Химические свойства	Способы палучения
$\begin{aligned} & \mathrm{CaC}_{2}-\text { кар- } \\ & \text { бид кальция } \end{aligned}$	$\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { ацетилен }}{\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \uparrow}$	$\begin{gathered} \begin{array}{c} \text { Взаимодействием } \\ \text { простых ве- } \\ \text { ществ:** } \end{array} \\ \mathrm{Ca}+2 \mathrm{C} \xrightarrow{\stackrel{\circ}{\rightarrow}} \mathrm{CaC}_{2} \end{gathered}$
$\begin{gathered} \mathrm{CaH}_{2}-\text { ги- } \\ \text { дрид кальция } \end{gathered}$	$\mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \uparrow$	Взаимодействием простых веществ: $\mathrm{Ca}+\mathrm{H}_{2} \rightarrow \mathrm{CaH}_{2}$
	$\mathrm{CaCl}_{2}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ - растворимые соли; CaSO_{4}^{-}малорастворимая соль, а $\mathrm{CaCO}_{3}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ и CaSiO_{3} - нерастворимые соли. Проявляют химические свойства солей. $\mathrm{CaCO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaO}+\mathrm{CO}_{2} \uparrow$	Взаимодействием CaO или $\mathrm{Ca}(\mathrm{OH})_{2}$ с соответствующи ми кислотами: $\begin{gathered} \mathrm{CaO}+2 \mathrm{HCl} \rightarrow \\ \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \\ \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+ \\ 2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
$\underset{\text { гйс }}{\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}-}$	$\xrightarrow{\mathfrak{t}^{\circ}} \underset{2}{2\left[\mathrm{CaSO}_{4} \cdot 2 \mathrm{CaSO}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O} \uparrow\right.}$	Сплавление $\mathrm{CaCl}_{2} \mathrm{c} \mathrm{K}_{2} \mathrm{SO}_{4}$
$\underset{\text { алебастр }}{2 \text { CaSO }_{4} \mathbf{H}_{2} \mathrm{O}-}$	-	Нагреванием гипса до $150-180^{\circ} \mathrm{C}$

[^13]
12.4. жЕЕСТЕОСТЬ ВОДЫ

Жесткая вода образует накипь на котлах, которая приводит к коррозии стенок котлов и повышает расход топлива. Жесткая вода непригодна для стирки (мыло плохо пенится), в ней плохо развариваются мясо, овощи, а очень жесткая вода непригодна для питья.

Общая жесткость воды представляет собой сумму временной и постоянной жесткости.

таблица 51
Способы устрапения жесткости воды

Вид жесткости	Соли, обусловливающие жесткость воды	Способы устранения жесткости (умягчение) водь
Карбонатная (временная)	$\begin{gathered} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \\ \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \\ \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2} \end{gathered}$	Нагреванием до $70-80^{\circ} \mathrm{C}$ (кипячением): $\begin{gathered} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} ; \\ \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} \\ \text { или } \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
Некарбонатная (постоянная)	$\begin{gathered} \mathrm{CaSO}_{4} \\ \mathrm{MgSO}_{4} \\ \mathrm{CaCl}_{2} \\ \mathrm{MgCl}_{2} \end{gathered}$	1. Химическими методами: $\begin{gathered} \mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4} \\ 3 \mathrm{CaSO}_{4}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow+3 \mathrm{Na}_{2} \mathrm{SO}_{4} \end{gathered}$ 2. Исполњзование ионообменных смол (катионитов, анионитов) (катионы Ca^{2+} и Mg^{2+} обмениваются на катионы Na^{+}, содержащиеся в применяемом катионите)

12.5. БМОЛОГМЧЕСКАЯ РОЛЬ КАЛЬЦИЯ

Кальций выполняет различные биологические функции и важен для всех форм жизни. Ионы кальция содержатся в некоторых белках, влияют на работу ферментных систем, на процессы свертывания крови и регулирования нормального ритма сокращения сердца.

Кальций входит в состав опорных частей человеческого организма. Соединения кальция образуют основу твердой части зубной ткани и яичной скорлупы. Дефицит кальция в организме человека вызывает замедление роста скелета и хрупкость костей. В организме человека массой 70 кг содержится ~ 1 кгкальция (в крови, костной и мышечной тканях).

13. ЭЛЕМЕНТЫ ГРУПIЫ IIIA (р-ЭЛЕМЕНТЫ)

13.1. OBHAR XAPARTEPHCTHRA ЭJEMEHTOB

таблича 52
Основные сведения об элементах

Символ элемента	B	$A l$	Ga	In	Tl
Латин. ское название	Borum	Aluminium	Gallium	Indium	Thallium
Pyсское название	Бор	$\begin{aligned} & \text { Алюми- } \\ & \text { ний } \end{aligned}$	Галлий	Индий	Таллий
Год omкрытия	1808	1825	1875	1863	1861
Asmopb открытия	Ж. Л. ГейЛюссак, Л. Ж. Тенар	$\underset{\text { стед }}{\text { Х. К. Эр. }}$	П. Э. Лекок де Буабодран	Ф. Райх, Т. Рихтер	У. Крукс
Содержание в земной коре, массовая доля, \%	$5 \cdot 10^{-3}$	8,8	1,5 10^{-3}	1,4.10-5	$3 \cdot 10^{-4}$
Основные природные соединения	$\begin{gathered} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \\ -10 \mathrm{H}_{2} \mathrm{O}(6 \mathrm{ypa}), \\ \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O} \\ (\text { кериит), } \\ \mathrm{H}_{3} \mathrm{BO} 0_{3} \\ \text { (сассолин) } \end{gathered}$	Алюмосиликаты" $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (бокситы), $\mathrm{Al}_{2} \mathrm{O}_{3}$ (корунд), $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ (криолит)	CuGaS_{2} (галлит), изоморфная примесь в минералах алюминня, цинка	$\mathrm{In}_{2} \mathrm{~S}_{4}$ (индит), CuInS ${ }_{2}$ (рокезит), примесь в минералах цинка	TlAsS ${ }_{2}$ (лорандит), (Tl, $\mathrm{Cu}, \mathrm{Ag})_{2}$ Se (круксит)

* Алюмосиликаты: $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ - белая глина, $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ - полевой шпат, $\mathrm{K}_{2} \mathrm{O} \cdot \mathbf{3 A l}_{2} \mathrm{O}_{\mathbf{3}} \cdot \mathbf{6 S i O _ { 2 }} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$ - слюда.

Электронные конфигурации атомов в основном состоянии:

$$
\begin{aligned}
& { }_{5} \mathrm{~B}-1 s^{2} 2 s^{2} 2 p^{1} \\
& { }_{13} \mathrm{Al}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1} \\
& { }_{11}^{\mathrm{Ga}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{1}} \\
& { }_{49} \mathrm{In}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{1} \\
& { }_{81} \mathrm{Tl}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{1}
\end{aligned}
$$

Атомные характеристики

Элемент	B	$A l$	$G a$	In	77
Атомный (порядковыйи) номер	5	13	31	49	81
Относительная атамная масса	10,81	26,98	69,72	114,82	204,38
Строение внешних алектронных оболочек атомов			$n($ номер периода) $=2,3,4,5,6$		
Электронная формула валентного уровня	$\ldots 2 s^{2} 2 p^{1}$	$\ldots 3 s^{2} 3 p^{1}$	$\ldots 4 s^{2} 4 p^{1}$	$\ldots 5 s^{2} 5 p^{1}$	$\ldots . .6 s^{2} 6 p^{1}$
Ковалентный радиус атама, KM	0,081	0,118	0,126	0,114	0,148
Металлический радиус атама, KM	0,098	0,143	0,139	0,166	0,171
Радиус иона, ルM Э ${ }^{3+}$	0,027	0,0535	0,062	0,080	0,089
3^{+}	-	-	-	0,130	0,144
Первый потенциал иокизации, эB	8,2981	5,9858	5,998	5,7864	6,1080
$\begin{gathered} \text { Cродство } \\ \kappa \text { электрону, } \\ \ni \boldsymbol{B} \\ \hline \end{gathered}$	0,30	0,20	0,39	0,20	0,32
Электроотрицательность	2,01	1,47	1,82	1,49	1,44
Степени окисления	+3,-3	+3	+1,+2,+3	+1,+2,+3	+1,+3

Все элементы IIIA-группы, за исключением, бора являются типичными металлами. Бор проявляет неметаллические свойства; гидроксид бора $\mathrm{H}_{3} \mathrm{BO}_{3}$ является кислотой. Гидроксиды $\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Ga}(\mathrm{OH})_{3}$ - типичные амфотерные соединения, у $\operatorname{In}(\mathrm{OH})_{3}$ преобладают основные свойства, кислотные свойства $\mathrm{Tl}(\mathrm{OH})_{3}$ выражены очень слабо. Из металлов III A-группы наибольшее значение имеет алюминий, основные свойства и способы получение которого приведены в табл. 54, а его соединений - в табл. 55.

13.2. AHLOMMHII - IPOCTOE BEMLCTBO

таблица 54
Основные свойства, получение

Физические свойства
Серебристо-белый пластичный легкий металл, $\rho=2700 \mathrm{kr} / \mathrm{m}^{3}, T_{\mathrm{un}}=660^{\circ} \mathrm{C} .$ Уделъное электросопротивление 0,029 мкОм•м
Хикические свойства
Взаимодействие с простыми веществами (неметаллами): $\begin{gathered} 4 \mathrm{Al}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}}{2 \mathrm{Al}_{2} \mathrm{O}_{3}, 2 \mathrm{Al}+3 \mathrm{Cl}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{AlCl}_{3}}_{2 \mathrm{Al}+3 \mathrm{~S}}^{\rightarrow} \mathrm{Al}_{2} \mathrm{~S}_{3}, 2 \mathrm{Al}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{AlN} \\ 4 \mathrm{Al}+3 \mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Al}_{4} \mathrm{C}_{3} \end{gathered}$ Взаимодействие со сложными веществами: $2 \mathrm{Al}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \uparrow$ (реакция идет, если снять пленку $\mathrm{Al}_{2} \mathrm{O}_{3}$), $\begin{gathered} 2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \uparrow, \\ 2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{p}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \uparrow, \\ 2 \mathrm{Al}+4 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{\kappa}) \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}, \\ 8 \mathrm{Al}+30 \mathrm{HNO}_{3}(\mathrm{p}) \xrightarrow{\mathrm{t}^{\circ}} 8 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{~N}_{2} \mathrm{O}+15 \mathrm{H}_{2} \mathrm{O}, \\ 2 \mathrm{Al}+2 \mathrm{NaOH}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\rightarrow}{2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]+3 \mathrm{H}_{2} \uparrow,} \\ 2 \mathrm{Al}+\underset{\substack{\mathrm{Fe}_{2} \mathrm{O}_{3} \xrightarrow{\mathrm{t}^{\circ}} \\ \text { (реакция } \\ 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}+Q \\ \text { Бекетова) }}}{ } \end{gathered}$
Способ получения
Электролиз раствора $\mathrm{Al}_{2} \mathrm{O}_{3}$ в расплавленном криолите $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ с добавкой CaF_{2} (параметры процесса: $T=950-980^{\circ} \mathrm{C}, I=80000 \mathrm{~A}, U=5-8 \mathrm{~B}$): $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ (окисление анода). Схема установки для получения алюминия показана на рис. 39

Основные свойства, получение

Физические свойства	Химические свойства	Способы получения
$\mathrm{Al}_{2} \mathrm{O}_{3}$ - оксид алюминия (в природе корунд, рубин)		
$\begin{gathered} \rho=3960 \\ \text { кгг м }^{3}, T_{\text {nп }} \\ =2050^{\circ} \mathrm{C} \\ \text { Очень } \\ \text { твердде } \\ \text { вещество, } \\ \text { нераство- } \\ \text { римое в } \\ \mathbf{H}_{2} \mathrm{O} \end{gathered}$	Обладает амфотерными свойствами: $\begin{gathered} \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right], \\ \mathrm{Al}_{2} \mathrm{O}_{3}+\underset{\text { (твердиа) }}{2 \mathrm{NaOH}} \underset{\text { cплаалевие }}{\mathrm{i}} \\ 2 \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O} \uparrow \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{Al}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Al}_{2} \mathrm{O}_{3}, \\ \quad 2 \mathrm{Al}(\mathrm{OH})_{3} \xrightarrow{\mathrm{t}^{\circ}} \\ \xrightarrow[\rightarrow]{\mathrm{t}^{\circ}} \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
$\mathrm{Al}(\mathrm{OH})_{3}$ - гндроксид алюминия		
Твердое вещество белого цвета, нерастворимое в $\mathrm{H}_{2} \mathrm{O}$	Обладает амфотерными свойствами: $\begin{gathered} 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \\ \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \\ 2 \mathrm{Al}(\mathrm{OH})_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{AlCl}_{3}+3 \mathrm{NaOH} \rightarrow \\ \rightarrow \mathrm{Al}(\mathrm{OH})_{3} \downarrow+ \\ 3 \mathrm{NaCl}, \\ \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{KOH} \rightarrow \\ \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+ \\ 3 \mathrm{~K}_{2} \mathrm{SO}_{4} \\ \mathrm{Al}^{3+}+3 \mathrm{OH}^{-} \rightarrow \\ \rightarrow \mathrm{Al}(\mathrm{OH})_{3} \downarrow \end{gathered}$

Соли аппминия: $\mathrm{Al} \mathrm{\Gamma}_{3}(\Gamma=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{F}), \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ - сульфат алюоминия, $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ - алпомокалиевые квасцы, $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ - алюмонатриевые квасцы, $\mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$ - ацетат алюмминия, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ нитрат алюминия, AlPO_{4} - фосфат алюминия, $\mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{3}$ - силнкат алюминия, $\mathrm{Al}_{2} \mathrm{~S}_{3}$ - сульфид алюминия
Все соли аломиния, кроме AlPO_{4} и $\mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{3}$, хорошо растворимы в воде и проявляют все свойства солей. Характерным свойством солей алюоминия является необратимый их гидролиз. По зтой причине нельзя получить соли слабых летучих кислот $\left(\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}, \mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ в растворе:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}_{2} \mathrm{~S} \uparrow \\
& \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}_{2} \mathrm{CO}_{3} \\
& 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
\end{aligned}
$$

Рис. 39
Схема электролитического получения алюминия
1 - стальвая ванва; 2 - кавал для стока расплавленного алюминия;
3 - термическая изоляция из огнеупорного материала; 4 - угольный анод;
5 - катод из угольных брусков и расплавлевного алюминия;
6 - оксид алюминия в расплавленном криолите
таблица 56
Примепение алюминия, его сплавов и соединений

Вещество	Области применения
Алюминий как простое вещество	Электротехника (провода), металлургия (алюминотермия), машиностроение, в быту (посуда)
Сплавы алюминия	Судостроение, ракето- и авиастроение, автомо-биле- и приборостроение, строительство зданий, военная техника
Оксид алюминия	Для получения алюминия и абразивных изделий, драгоценных камней (рубин, сапфир)
Гидроксид алюминия	Для очистки воды
$\begin{aligned} & {\text { Соли } \mathrm{AlCl}_{3},}{ }^{\mathrm{AlBr}_{3} \text { и } \mathrm{All}_{3}} \end{aligned}$	В качестве катализаторов при переработке нефти
AlF_{3}	Входит в состав криолита и используется для получения алюминия
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	Для дубления кожи и в дроизводстве хлопчатобумажных тканей
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$	В производстве бумаги, для очистки воды

13.4. БНОЛОГМपЕСКАЯ РОЛБ АЛНОМННИЯ

Алюминий входит в состав межклеточных растворов и тканей живых организмов. Больше всего алюминия, в основном в связанном виде с белками, концентрируется в мозге, печени и легких. Из растений наиболее богаты алюминием перец, огурцы, абрикосы и черная смородина. Однако избыток алюминия в пище оказывает вредное влияние на организм.

14. ЭЛЕМЕНТЫ ГРУПIЫ VIB (d-ЭЛEMEHTB)

14.1. OBHAЯ XAPAKTEPHCTHEA OJEMEHTOB

таблица 57
Основные сведения об элемевтах

Симвал элемента	Cr	Mo	W
Латинское название	Chromium	Molybdaenum	Wolframium
Русское название	Хром	Молибден	Вольфрам
Год открьıтия	1797	1778	1781
Asmop открытия	Л. Н. Воклен	К. Шееле	К. Шееле
Содержание в земной коре, массовая доля, \%	$3,5 \cdot 10^{-2}$	$1,1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$
Основные природные соединения	$\begin{gathered} \mathrm{FeCr}_{2} \mathrm{O}_{4}(\text { хро- } \\ \text { мит }) \\ \mathrm{PbCrO}_{4}(\mathrm{kpo-} \\ \text { коит), } \\ \left(\mathrm{Mg}, \mathrm{Fe}^{2} \mathrm{CrO}_{4}\right. \\ \text { (магнохромит), } \\ \text { обнаружен на } \\ \text { Cолнце, в звез- } \\ \text { дах и метео- } \\ \text { ритах } \end{gathered}$		$\begin{gathered} \mathrm{CaWO}_{4} \\ \left(\begin{array}{c} \text { (шеелит } \\ \text { (ㄹ, Mn)WO } \\ \text { (вольфра- } \\ \text { мит) } \end{array}\right. \\ \hline \end{gathered}$

В соответствии с числом валентных электронов элементы группы VI B проявляют максимальную степень окисления +6 и образуют оксиды типа RO_{3}, которым соответствют кислоты $\mathrm{H}_{2} \mathrm{RO}_{4}$. Сила этих кислот снижается от хрома к вольфраму.

Электронные конфигурации атомов в основном состоянии:

$$
\begin{aligned}
& { }_{24} \mathrm{Cr}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1} \\
& { }_{42} \mathrm{Mo}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{5} 5 s^{1} \\
& { }_{4} \mathrm{~W}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{4} 6 s^{2}
\end{aligned}
$$

Побочную подгруппу VI группы периодической системы Д. И. Мепделеева составляют d-элементы хром Cr , молибден Мо и вольфрам W. У хрома и молибдена за счет проскока электрона с подуровня s на подуровень d наблюдается отклонение от общей электронной формулы $d^{4} s^{2}$, характерной для элементов данной подгруппы. Как можно видеть из строения внешних электронных оболочек атомов хромя, молибдена и вольфрама, они проявляют максимальную степень окисления +6 и образуют оксиды состава RO_{3}, которым соответствуют кислоты состава $\mathrm{H}_{2} \mathrm{RO}_{4}$; сила кислот убывает от хрома к вольфраму. Большая часть солей этих кислот малорастворима в воде, за исключением солей аммония и щелочных металлов. Соли хромовых кислот $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ и $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ в кислой среде являются сильными окислителями (табл. 61).

таблица 58
Атомные характеристики

Элемент	$C r$	$M o$	W
Атомньй (порядковый) номер	24	42	74
Относительная атамная масса	51,996	95,940	183,850
Электронная форяла валент- ного уровня	$\ldots 3 d^{5} 4 s^{1}$	$\ldots 4 d^{6} 5 s^{1}$	$\ldots 5 d^{4} 6 s^{2}$
Потенцал ионизации, эВ	6,65	7,10	7,98
Сродство к электрону, эВ	0,98	1,18	1,23
Электроотрицательность	1,56	1,30	1,40
Степени окисления	$+2,+3,+6$	$+2,+3,+4$, $+5,+6$	$+2,+3,+4$, $+5,+6$

Строение внешних электронных оболочек атомов:

Химическая активность металлов понижается в ряду от Cr к W.

14.2. XPOM - IIPOCTOE BEMECTBO

Основные свойства, получение, применение

14.3. COEMHEBHS XPOMA

таблица 60
Основные свойства н получение оксндов и гидроксидов хрома

Физические свойства	Химические сөойства	Способы получения
CrO - оксид хрома (II)		
Tвердое вещество черного цвета	$\begin{gathered} \mathrm{CrO}-\text { основной оксид } \\ 4 \mathrm{CrO}+\mathrm{O}_{2} \xrightarrow{>373 \mathrm{~K}} 2 \mathrm{Cr}_{2} \mathrm{O}_{3}, \\ \mathrm{CrO}+2 \mathrm{HCl} \rightarrow \mathrm{CrCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{CrO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}^{2+}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	Окисление амальгамы хрома (раствора хрома в ртути) на воздухе: $2 \mathrm{Cr}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}$
$\mathbf{C r}(\mathrm{OH})_{2}$ - гидроксид хрома (II)		
Tвердое вещество (ocaдок) желтого цвета, нерас-творимое в воде	$\mathrm{Cr}(\mathrm{OH})_{2}$ проявляет свойства основания и обладает восстановительными свойствами: $\begin{gathered} \mathrm{Cr}(\mathrm{OH})_{2} \xrightarrow[\text { прокаливание }]{\mathrm{t}^{\circ}} \\ \rightarrow \mathrm{CrO}+\mathrm{H}_{2} \mathrm{O}, \end{gathered}$ окисление на воздухе: $2 \mathrm{Cr}(\mathrm{OH})_{2}+y_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cr}(\mathrm{OH})_{3}$	$\begin{gathered} \underset{\mathbf{p}}{ } \mathrm{CrCl}_{2}+2 \mathrm{NaOH} \rightarrow \\ \rightarrow \underset{\mathbf{p}}{\mathrm{Cr}(\mathrm{OH})_{2} \downarrow+2 \mathrm{NaCl}} \underset{\mathbf{p}}{ } \\ \mathrm{Cr}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{2} \downarrow \end{gathered}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$ - оксид хрома (III)		
Tвердое порош-коо-бразное вещество зеленого цвета, туго-плавкое	$\mathrm{Cr}_{2} \mathrm{O}_{3}$ - амфотерный оксид: $\begin{gathered} \mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{HNO}_{3} \rightarrow \\ \rightarrow 2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}, \end{gathered}$ хроміт натрия $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \nrightarrow$ реакции нет	$\begin{gathered} 4 \mathrm{Cr}+3 \mathrm{O}_{2} \xrightarrow{\stackrel{\mathrm{t}^{\circ}}{\rightarrow}} 2 \mathrm{Cr}_{2} \mathrm{O}_{3}, \\ 2 \mathrm{Cr}\left(\mathrm{OH}_{3}\right)_{\rightarrow}^{\mathrm{t}^{\circ}} \mathrm{Cr}_{2} \mathrm{O}_{3}+ \\ 3 \mathrm{H}_{2} \mathrm{O}, \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\mathrm{t}^{\circ}} \\ \xrightarrow[\rightarrow]{\mathrm{t}^{\circ}} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2} \uparrow+4 \mathrm{H}_{2} \mathrm{O}, \\ 4 \mathrm{CrO}_{3} \xrightarrow{\mathrm{t}^{+}} 2 \mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{2}, \\ \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{S} \xrightarrow[\rightarrow]{\mathrm{t}^{\circ}} \\ \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ \hline \end{gathered}$

Продолжение табл. 60

$\Phi_{\text {изические }}$ свойствa	Химические свойства	Способы палучения
$\mathrm{Cr}(\mathrm{OH})_{s}$ - гчдроксид хрома (III)		
Твердое вещество серозеленого цвета, нерас-твориmoe \quad в воде	$\mathrm{Cr}(\mathrm{OH})_{3}$ - амфотерный гидроксид, реагирует с кислотами и со щелочами: $\begin{gathered} \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{CrCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{NaOH} \xrightarrow[\text { сплавлевяе }]{\mathrm{NaCrO}}+2 \mathrm{H}_{2} \mathrm{O}, \underset{\mathrm{Cr}(\mathrm{OH})_{3}+}{\mathrm{NaCl}} \\ +\mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{Na}\left[\mathrm{Cr}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \\ \text { (в расторе) } \end{gathered}$	$\begin{gathered} \mathrm{CrCl}_{3}+3 \mathrm{NaOH} \rightarrow \\ \rightarrow \mathrm{Cr}(\mathrm{OH})_{3} \downarrow+ \\ +3 \mathrm{NaCl}, \\ \\ \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+ \\ +6 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \\ \left.\rightarrow 2 \mathrm{Cr}_{4} \mathrm{OH}\right)_{3} \downarrow+ \\ +3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \end{gathered}$
CrO_{3} - оксид хрома (VI), хромовый ангидрид		
Твердое кри-сталлическое вецество темнокрасного цвета, хорошо растворимое в воде	$\begin{gathered} \mathrm{CrO}_{3} \text { - типичный кислотный } \\ \text { оксид (ангидрид); } \\ \mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CrO}_{4} \text { (избыток } \\ \left.\mathrm{H}_{2} \mathrm{O}\right), 2 \mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \left(\text { избыттк } \mathrm{CrO}_{3}\right. \text {), } \\ \mathrm{CrO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \\ \rightarrow \mathrm{BaCrO}_{4} \downarrow+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{CrO}_{3}+\mathrm{CaO} \rightarrow \mathrm{CaCrO}_{4} ; \\ 4 \mathrm{CrO}_{3}+3 \mathrm{~S} \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{2} \uparrow, \\ 4 \mathrm{CrO}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{CO}_{2} \uparrow, \\ 4 \mathrm{CrO}_{3} \xrightarrow[\rightarrow]{\mathrm{t}_{0}^{\circ}} \mathrm{Cr}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{2} \uparrow \end{gathered}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4(x)} \rightarrow \\ \rightarrow 2 \mathrm{CrO}_{3} \downarrow+\mathrm{K}_{2} \mathrm{SO}_{4}+ \\ +\mathrm{H}_{2} \mathrm{O} ; \end{gathered}$ CrO_{3} в результате этой реакции вымадает в виде темнокрасных игольчатых кристаллов
$\mathrm{H}_{2} \mathrm{CrO}$ - хромовая кислота		
-	$\mathrm{H}_{2} \mathrm{CrO}_{4}$ - нестойкая кислота, существует только в водном растворе; проявляет свойства кислот, образует соли хроматы	
$\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ - двухромовая кислота		
-	$\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ - нестойкая кислота, существует тольков водном растворе; проявляет свойства кислот, образует соли дихроматы	$\begin{gathered} 2 \mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \left(\text { избыток } \mathrm{CrO}_{3}\right. \text {), } \\ \mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 2 \mathrm{H}_{2} \mathrm{CrO}_{4} \end{gathered}$

Основные свойствя и получение солей хромовых кислот

Физические свойства	Химические свойства	Способь получения
PbCrO_{4} - хромат свинца (II) (желтый крон)		
Твердое вещество желтого цвета	Проявляет свойства солей, в воде нерастворим	-
$\mathrm{K}_{2} \mathrm{CrO}_{4}$-хромат калия		
Кристаллы желтого цвета	Существует только в щелочной среде:	$\begin{gathered} \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{KOH}+\mathrm{KClO}_{3} \\ \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{KCl}+2 \mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{~K}_{3}\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]+ \\ +3 \mathrm{Br}_{2}+4 \mathrm{KOH} \rightarrow \\ \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+6 \mathrm{KBr}+8 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ - дихромат калия (хромшик)		
Твердое кристаллнческое вещество оранжевокрасного цвета	Существует тольк $\begin{array}{r} 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows \mathrm{~K} \\ 2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightleftarrows \end{array}$ В кислой среде соли сильные ок $\begin{array}{r} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{Na} \\ \rightarrow 3 \mathrm{~S}^{0}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+ \\ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl} \end{array}$	кислой среде: $\begin{aligned} & \mathrm{r}_{2} \mathrm{O}_{7}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{r}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ омовых кислот лители: $\begin{aligned} & +7 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ & \mathrm{Na}_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{r}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\ & +3 \mathrm{Cl}_{2} \uparrow+2 \mathrm{KCl}+7 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
$\mathrm{Na}_{2} \mathrm{Cr}_{3} \mathrm{O}_{7} \cdot \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ - дихромат ватрия (хромпик)		
Кристаллы оранжевокрасного цвета	Смеси водныхх растворов дихроматов с $\mathrm{H}_{2} \mathrm{SO}_{4}$ (к) $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k})\right.$ и $\left.\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k})\right)$ являются очень скльными окислителями ("хромовая смесь)	-
$\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{1 2 H}_{\mathbf{2}} \mathrm{O}$ - хромовокалиевые квасцы		
-	-	Выпаривание водного раствора соли $\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

Областн примевения соединений хрома

Соединения	Области применения
CrO_{3} и $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Как окислители в различных химических производствах
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	При полировке стеклянньх и металлических поверхностей, как зелепый пигмент в составе краски
PbCrO_{4}	Для приготовления желтой масляной краски
$(\mathrm{PbOH})_{2} \mathrm{CrO}_{4}$	Для приготовления красной краски
$\underset{\text { K } \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}}$	В текстильной промышленности (закрепление красок), в кожевенной промыппенности (дубление кожи), в тишографии
Хромовая смесь (3%-ный раствор $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~K})$)	Как очень сильные окислители - в лаборатории для мыттья химической посуды
Другие соединения Cr (VI)	Как сильные окислители - в химической промыпленности

14.4. БНОЛОГॠФЕСКАЯ РОЛБ ХРОМА

Хром является составной частью растительных и животных организмов, участвует в деятельности ферментов (пепсина). Хром наряду с марганцем, кобальтом, медью и никелем участвует в синтезе белков, а наряду с кобальтом, медью, иодом, маргандем, молибденом, никелем, ванадием и цинком оказывает влияние на сердечно-сосудистую систему человека. Недостаток хрома замедляет рост животных, нарушает углеводный обмен, вызывает болезнь глаз, симптомы диабета. Растворимые соединения хрома ядовиты. В организме человека содержится в крови, мышечной и костной тканях.
15. OJEMEHTBI TPYIIBI VIIIB (d-ЭJEMEHTBI)

таблица 63
Основные сведения об элементах

Символ элемента	Fe	Co	$N i$
Латинское назва. ние	Ferrum	Cobaltum	Niccolum
Русское название	Железо	Кобальт	Никель
Год открьтия	Известно с древних времен	1735	1751
Aөтор открытия	-	Г. Брандт	А. Кронстедт
Содержсание в земной коре, массовая даля, \%	4,65	$4 \cdot 10^{-3}$	$8 \cdot 10^{-3}$
Основнье природные соединения	$\begin{gathered} \mathrm{Fe}_{3} \mathrm{O}_{4}(\text { маг- } \\ \text { нетит }), \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\text { (гмматит), } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \\ \text { (лимонит) } \end{gathered}$	CoAsS (кобальтин), (Co, Fe) As_{2} (саффлорит), CoAs_{3} (скуттерудкт)	$(\mathrm{Fe}, \mathrm{Ni})_{9} \mathrm{~S}_{8}$ (пентландит), NiAs (никелин), $\mathrm{Ni}_{3} \mathrm{~S}_{4}$ (полидимит)

таблица 64
Атомные характеристики

Элемент	Fe	Co	Ni
Атамный (порядковый) номер	26	27	28
Относительная атомная масса	55,85	58,93	58,69
Электронная формула валентного $\left.\begin{array}{c}\text { уровня }\end{array}\right)$	$\ldots 3 d^{6} 4 s^{2}$	$\ldots 3 d^{7} 4 s^{2}$	$\ldots 3 d^{8} 4 s^{2}$
Сродство к электрону, эВ	0,58	0,94	1,28
Электроотрицательность	1,64	1,70	1,75
Стелени окисления	+2,+3,+6	+2,+3	+2,+3,+4

Электронные конфигурации атомов в основном состоянии:

$$
\begin{aligned}
& { }_{26} \mathrm{Fe}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \\
& { }_{27} \mathrm{Co}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7} 4 s^{2} \\
& { }_{28} \mathrm{Ni}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}
\end{aligned}
$$

15.2. 8XEJE30 - IIPOCTOE BEMECTBO

таблица 65
Основные свойства, получение и применение

Pис. 40
Схема доменной печи для получения чугуна

Phe. 41
Схема устройства конвертора Вессемера для выплавки стали

Рис. 42
Схема электропечи для выплавки стали

15.3. COEПHHEHMS \#EЛEЗA

таблица 66
Освовные свойства и получевие оксидов и гидроксидов железа

Физические свойства	Химические свойства	Способы получения
FeO - оксид железа (II)		
Твердое вещество черного цвета, нерастворимое в воде	$\begin{gathered} \mathrm{FeO} \text { - основной оксид: } \\ \mathrm{FeO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{FeO}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\mathrm{FeCO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{FeO}+\mathrm{CO}_{2} \uparrow$ (без доступа воздуха), $\mathrm{Fe}(\mathrm{OH})_{2} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{FeO}+\mathrm{H}_{2} \mathrm{O}$ (без доступа воздуха), $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \rightarrow 3 \mathrm{Fe} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{Fe}(\mathrm{OH})_{2}$ - тидроксид железа (II)		
Студнеобразное вещество светлозеленого цвета	Типичное основание: $\begin{gathered} \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ 4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+ \\ +2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { окаслгенае }]{\text { на вомхе }} 4 \mathrm{Fe}(\mathrm{OH})_{3} \end{gathered}$	
$\mathrm{Fe}_{2} \mathrm{O}_{5}$ - оксид железа (III)		
Твердое вещество краснобурого цвета, нерастворимое в ноде	$\begin{gathered} \begin{array}{c} \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+ \\ +3 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow[\text { силавление }]{ } \\ 2 \mathrm{NaFeO}_{2}+\mathrm{CO}_{2} \uparrow \\ \text { феррят натряя } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{Fe}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Fe}_{2} \mathrm{O}_{3}, \\ 4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\mathrm{o}}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+ \\ +8 \mathrm{SO}_{2} \uparrow, \\ 2 \mathrm{Fe}(\mathrm{OH})_{3} \rightarrow \\ \rightarrow \end{gathered} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}(\mathrm{OH})_{3}$ - тидроксид железа (III)		
Студнеобразное вещество краснобурого цвета, нераствори. мое в воде	$\mathrm{Fe}(\mathrm{OH})_{3}$ - слабое основание с преобладанием основных свойств и слабыми амфотерными свойствами: $\begin{gathered} 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{KOH}(\mathrm{~K}) \rightarrow \\ \mathrm{KFeO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ \text { феррит калия } \end{gathered}$	$\begin{gathered} \mathrm{FeCl}_{3}+3 \mathrm{NaOH} \rightarrow \\ \rightarrow \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+3 \mathrm{NaCl}, \\ \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{KOH} \rightarrow \\ \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+3 \mathrm{~K}_{2} \mathrm{SO}_{4} \end{gathered}$
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ - смепанный оксид железа (II, III)		
Твердое вещество черного цвета, нерастворимое в воде п об. ладающее магнитными свойствами	$\begin{gathered} \mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow \\ \rightarrow 2 \mathrm{FeCl}_{3}+\mathrm{FeCl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{gathered} 3 \mathrm{Fe}+2 \mathrm{O}_{2} \xrightarrow[\text { ввсокая }]{\mathrm{t}^{\circ}} \\ \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4} \end{gathered}$

Химические свойства и применение солей железа

Химические свойства	Области применения
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ - железный купорос	
Проявляет общие свойства солей	Для из. готовления чернил и красок
FeCl_{3} - хлорид железа (III)	
Соли железа (III) устойсивы на воздухе, гидролизуются водои, и их водные растворы имеют кислую реакцию: $\begin{gathered} \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{FeOHCl}_{2}+\mathrm{HCl}, \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows[\mathrm{FeOH}]^{2+}+\mathrm{H}^{+}, \\ \mathrm{FeCl}_{3}+3 \mathrm{NH}_{4} \mathrm{CNS} \rightarrow \underset{\text { pоданнд железа, }}{\mathrm{Fe}(\mathrm{CNS})_{4}+3 \mathrm{NH}_{4} \mathrm{Cl} .} \\ \text { кроваво-краснын цвет } \end{gathered}$	Для очистки воды и для протравы при крашении тканей
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ - сульфат железа (III)	
Анион роданид CNS служит для определения ионов Fe^{3+} в растворах; это качественная реакция на ион $\mathrm{Fe}^{3+}+3 \mathrm{CNS}^{-} \rightarrow \mathrm{Fe}(\mathrm{CNS})_{3}$	Для травления металлов и как коагулянт
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ - нитрат железа (III)	
$\begin{gathered} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+3 \mathrm{NaNO}_{3}, \\ \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{FePO} \downarrow+3 \mathrm{KNO}_{3} \end{gathered}$	Для протравы при крашении тканей
$\overline{\mathbf{K}}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ - гексацианоферрат (II) калия (желтая кровяная соль)	
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{+}$ Ионы $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ взаимодействуют с ионами Fe^{3+} : $4 \mathrm{Fe}^{3+}+3[\mathrm{Fe}(\mathrm{CN}) 6]^{4-} \rightarrow \underset{\text { 6ерлинская лазурь }}{\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \downarrow}-$ әто качественная реакция на ион Fe^{3+}	В химляческой лаборатории при анали-
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{8}\right]$ - гексадианоферрат (III) калия (красная кровяная соль)	обнаруже нии ионов
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftarrows 3 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3}$ (в водном растворе). Ионы $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ взаимодействуют с Fe^{2+} : $3 \mathrm{Fe}^{2+}+2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{2} \rightarrow \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \downarrow-$ турнбулева скнв это качественная реакция на ион Fe^{2+}	$\begin{gathered} \mathrm{CN}^{-}, \\ \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \\ {\left[\mathrm{Fe}(\mathrm{CN})_{]}\right]^{3-}} \end{gathered}$

Железо входит в состав ферментов, которые катализируют окислительно-восстановительные продессы в организме человека и животных; входит в состав гемоглобина, являющегося переносчиком кислорода. Железо играет также важную роль в синтезе белков, процессах фотосинтеза и дыхания растений. Недостаток железа в организме человека приводит к болезни крови (анемии) и нарушению иммунной системы.

16. OBMHE CBOİGTBA HEMETAJJOB

таблица 68
Положение неметаллов в периодической системе элементов

Период	Группа элементов					
	IILA	IVA	VA	VIA	VILA	VIILA
1	-	-	-	-	${ }_{1} \mathrm{H}$	${ }_{2} \mathrm{He}$
2	${ }_{5} \mathrm{~B}$	${ }_{6} \mathrm{C}$	${ }_{7} \mathrm{~N}$	${ }_{8} \mathrm{O}$	${ }_{9} \mathrm{~F}$	${ }_{10} \mathrm{Ne}$
3	-	${ }_{14} \mathrm{Si}$	${ }_{15} \mathrm{P}$	${ }_{16} \mathrm{~S}$	${ }_{17} \mathrm{Cl}$	${ }_{18} \mathrm{Ar}$
4	-	-	${ }_{33} \mathrm{As}$	${ }_{34} \mathrm{Se}$	${ }_{35} \mathrm{Br}$	${ }_{36} \mathrm{Kr}$
5	-	-	-	${ }_{52} \mathrm{Te}$	${ }_{63} \mathrm{I}$	${ }_{54} \mathrm{Xe}$
6	-	-	-	-	${ }_{85} \mathrm{At}$	${ }_{86} \mathrm{Rn}$
7	-	-	-	-	-	-
Формульь высших оксидов	$\mathrm{R}_{2} \mathrm{O}_{3}$	RO_{2}	$\mathrm{R}_{2} \mathrm{O}_{5}$	RO_{3}	$\mathrm{R}_{2} \mathrm{O}_{7}$	RO_{4}
Формульь летучих водородньхх соеди. нений	-	RH_{4}	RH_{3}	$\mathrm{H}_{2} \mathrm{R}$	HR	-
Примечание						
Из представленных здесь 22 неметаллов $\mathrm{H}_{3:} \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{He}, \mathrm{Ne}$, $\mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ - газы, Br_{2} - жидкость, B, C, Si, P, As, S, Se, Te, I_{2} твердые вещества (при обычных условиях).						
$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ - инертные газы, их молекулы одноатомны. Молекулы водорода, кислорода, азота, фтора, хлора, брома, иода состоят из 2 атомов.						
Молекулы фосфора состоят из $4\left(\mathbf{P}_{4}\right)$, молекулы серы - из 8 атомов (S_{8}). Вещества C и Si построены из атомных кристаллических решеток						

Как следует из табл. 68, неметаллы располагаются в конце малых и больших периодов. Атомы неметаллов присоединяют электроны (для завершения внешних электронных уровней) и являются окислителями. Способность присоединять электроны наиболее выражена у фтора и уменьшается в ряду от F к Si :
$\mathbf{F}, \quad \mathbf{O}, \quad \mathbf{C l}, \quad \mathrm{N}, \quad \mathrm{S}, \quad \mathrm{C}, \quad \mathrm{P}, \quad \mathrm{H}, \quad \mathrm{Si}$
Уменьшение способности присоединять электроны

С металлами типичные неметаллы образуют соединения с ионной связью: $\mathrm{NaCl}, \mathrm{KI}, \mathrm{BaO}, \mathrm{Na}_{2} \mathrm{~S}$ и др. Реагируя между собой, неметаллы образуют соединения с ковалентной полярной ($\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{NH}_{3}, \mathrm{HF}$ и др.) и неполярной (O_{2}, $\mathrm{H}_{2}, \mathrm{Cl}_{2}$) химической связью.

С водородом неметаллы образуют летучие соединения общей формулы RH_{x} (см. табл. 68): $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{~S}$, $\mathrm{NH}_{3}, \mathrm{CH}_{4}$ и др. Водородные соединения $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}$ при растворении в воде дают кислоты идентичной формулы, а NH_{3}, растворяясь в воде, образует аммиачную воду, обозначаемую формулой $\mathrm{NH}_{4} \mathrm{OH}$ (гидроксид аммония, 10%-й водный раствор аммиака называют нашатырным спиртом) или $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (гидрат аммиака).

C кислородом неметаллы образуют кислотные оксиды $\left(\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}\right.$ и др.), которым соответствуют кислоты ($\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}$, $\mathrm{HNO}_{2}, \mathrm{HNO}_{3}$), из них наиболее сильные те, в которых неметалл имеет более высокую степень окисления: $\mathrm{H}_{2} \mathrm{SO}_{4}$ сильнее $\mathrm{H}_{2} \mathrm{SO}_{3} ; \mathrm{HNO}_{3}$ сильнее HNO_{2} и т. д.

Химия благородных газов (VIIIA-группа) занимает особое место. Атомы благородных газов (кроме Не) содержат на внешнем уровне по 8 электронов, поэтому долгое время считали, что они не способны ни отдавать, ни принимать электроны. Толькос 1962 года, когда был получен тетрафторид ксенона XeF_{4}, химия благородных газов стала быстро развиваться. Наиболее изучены соединения ксенона. Известны и изучены галогениды $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$ (твердые вещества), оксиды XeO_{3} (твердое белое нелетучее вещество) и XeO_{4} (газ светло-желтого цвета), проявляющие свойства кислотных оксидов, которым соответствуют кислоты средней силы $\left(\mathrm{H}_{2} \mathrm{XeO}_{4}\right.$ и $\left.\mathrm{H}_{6} \mathrm{XeO}_{6}\right)$.

В водном растворе существует равновесие:

$$
\underset{\text { Равновесие звачительно сдвинуто влево }}{\mathrm{XeO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{XeO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HXeO}_{4}^{-}}
$$

Известны также соли этих кислот: ксенаты ($\mathrm{Na}_{2} \mathrm{XeO}_{4}$, BaXeO_{4} и др.) и перксенаты ($\mathrm{Ba}_{3} \mathrm{XeO}_{6}$).

17. ВОДОРОД

Водород по своим химическим свойствам сходен как с металлами (отдает электрон, образуя гидриды щелочных металлов), так и с неметаллами (принимает электров), но все же он ближе по свойствам к галогенам и поэтому помещен в VII группу периодической системы вместе с галогенами (см. табл. 68).

17.1. ВОДОРОД RAK IIPOGTOE BEMECTBO

таблица 69
Основные свойства, получевне, применение

Газ без вкуса, запаха и цвета, в 14,4 раза легче воздуха, плохо растворим в воде. При $-252,8^{\circ} \mathrm{C}$ п атмосферном давлении переходит в жидкое состояние. В природе существует 2 изотопа: протий ${ }_{1}^{1} \mathrm{H}(99,98 \%)$, дейтерий D (${ }_{1}^{2} \mathrm{H}$) $(0,02 \%)$; тритий T $\left({ }_{1}^{3} \mathrm{H}\right)$ - радиоактивный изотоп, полученный искусственно Химические свойства Взаимодействие с простыми веществами: a) со щелочными и щелочноземельными металлами: $\mathrm{H}_{2}+2 \mathrm{Na} \rightarrow 2 \mathrm{NaH}$, $\mathrm{H}_{2}+\mathrm{Ca} \rightarrow \mathrm{CaH}_{2}$; б) с галогенами: $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$; в) с кислородом: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{H}_{2} \mathrm{O}, \quad \underbrace{2 \text { объема } \mathrm{H}_{2}+1 \text { объ } \mathrm{O}_{2}}_{\text {гремучая смесь при поджигании взрывается }}$ г) с серой: $\mathrm{H}_{2}+\mathrm{S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{H}_{2} \mathrm{~S}$; д) с азотом: $3 \mathrm{H}_{2}+\mathrm{N}_{2} \xrightarrow{\text { p, } \boldsymbol{t}^{\circ}} 2 \mathrm{NH}_{3}$. Взакмодействие со сложными веществами: $\mathrm{H}_{2}+\mathrm{CuO} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ Способы палучения В промышленности: 1) электролиз водных растворов KCl и NaCl (как побочвый продукт); [см. раздел 11.3]; 2) $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathbf{t}=1000^{\circ} \mathrm{C}} \mathrm{CO}+\mathrm{H}_{2}$, 3) $\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (пар) $\xrightarrow[\text { кат. } \mathrm{Ni}]{\mathrm{t}=1300^{\circ} \mathrm{C}} \mathrm{CO}_{2}+4 \mathrm{H}_{2} \uparrow$; 4) $\mathrm{CH}_{4} \xrightarrow[\text { кат. }]{\mathrm{t}=350^{\circ} \mathrm{C}} \mathrm{C}+2 \mathrm{H}_{2} \uparrow$; 5) глубокое охлаждение коксового газа $\left(-196^{\circ} \mathrm{C}\right)$. В лабораторив: 1) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \uparrow$; 2) $\mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+$ $\left.+2 \mathrm{H}_{2} \uparrow ; 3\right) \mathrm{Si}+2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{K}_{2} \mathrm{SiO}_{\mathrm{s}}+2 \mathrm{H}_{2} \uparrow, 2 \mathrm{Al}+2 \mathrm{NaOH}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $\rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]+3 \mathrm{H}_{2} \uparrow$; 4) электролиз водного раствора NaOH : на катоде выделяется H_{2}, а на аноде O_{2} Области применения В хтмической промышленности для синтеза аммиака NH_{3}, хлороводорода HCl , метанола $\mathrm{CH}_{3} \mathrm{OH}$. В пищевой промышленности для гидрогенизации жиров. В металлургии для восстановления металлов (вольфрам, молибден и др.) из их соединений. В атомной энергетике используются изотошы дейтеркй и тритий (термоядерное горючее). В сварочном производстве для сварки и резки металлов

Основные свойства, получение и применение

Продолжение табл. 70

Физические свойства	Химические свойства	Способы получения и области применения
$\mathrm{H}_{2} \mathrm{O}_{2}$ - пероксид водорода. Степень окисления кислорода равна -1. Структурная формула: $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$		
Becцветная сиропообразная жидкость, $\rho=1450$ $\mathbf{K r} / \mathrm{M}^{3}$; затвердевает при $-0,48^{\circ} \mathrm{C}$	$\mathrm{H}_{2} \mathrm{O}_{2}$ - непрочное вещество, способное разлагаться со взрывом: Окислительные свойства $\mathrm{H}_{2} \mathrm{O}_{2}$: $\begin{gathered} \mathrm{KNO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ Восстановительные свойства $\mathrm{H}_{2} \mathrm{O}_{2}$: $\begin{gathered} \mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \uparrow \\ 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow 2 \mathrm{MnSO}_{4}+ \\ +5 \mathrm{O}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	В промышленности $\mathrm{H}_{2} \mathrm{O}_{2}$ получают действием разбавленной серной кислоты на пероксид бария $\begin{gathered} \mathrm{BaO}_{2}+\underset{\mathrm{H}_{2}}{\mathrm{SO}_{4} \rightleftarrows \mathrm{BaSO}_{4}+} \\ +\mathrm{H}_{2} \mathrm{O}_{2} . \end{gathered}$ В медицинне 3%-й раствор $\mathrm{H}_{2} \mathrm{O}_{2}$ используется как дезинфицирующее средство, в химических лабораториях - как реактив; для отбеливания 'гекстильных материалов, бумаги и др.; окислитель в реактивньх топливах, при получении глищерина и др. 30%-й раствор $\mathrm{H}_{2} \mathrm{O}_{2}$ называют пергидролем

17.3. ВНОЛОГПЧЕСКRЯ РОЛВ ВОДОРОДА Н ВОДЫ

Водород в молекулярном состоянии является нетоксичным газом, но и не поддерживает жизни. Его жизнетворная роль проявляется в его соединениях.

Водород входит в состав воды, жиров, белков и еще многих органических веществ, растений и животных.

Молекулу воды с точки зрения ее биологической важности можно назвать молекулой номер один, поскольку именно вода составляет основную массу любого живого организма. Содержание воды в теле только что родившегося человека составляет 77%, а в зрелом возрасте 50-62\% (50% у женщин и $60-62 \%$ у мужчин). Большая часть воды (-70%) в организме находится внутри клеток, примерно 23% приходится на внеклеточную воду (омывает клетки) и 7% воды находится внутри кровеносных сосудов в составе плазмы крови. Вклеточной воде содержатся в основном катионы калия и анионы фосфата. В организме непрерывно происходит обмен воды и растворенных в ней веществ.

18. OJEMEHTBI FPYIILI VIIA (s- и p-ЭJEMEHTGI)

таблица 71
Основные сведения об элементах

Символ элемента	He	Ne	Ar	Kr	Xe	Rn
Латинское название	Helium	Neanum	Argon	Kryptonum	$\begin{gathered} \text { Xe- } \\ \text { nonum } \end{gathered}$	$\begin{gathered} \text { Ra- } \\ \text { donum } \end{gathered}$
Русское название	Гелий	Неон	Аргон	$\underset{\text { Kрин }}{\substack{\text { орн }}}$	Ксенон	Радон
Год открьтиия	1868	1898	1894	1898	1898	1899
$\left\lvert\, \begin{array}{\|c} \text { Авторы } \\ \text { открытиия } \end{array}\right.$	Н. Локь- сен	у. Рамзай, $\underset{\text { mepc }}{\text { M. Tpa- }}$ вер	У. Рам зай, Дж Ралей	У. Рамзай, М. Траверс	У. Рам 3ău, M. Tpa верс	Э. Резepфорд Р. Оузвс
Формула өнешннго энеретти- ческого уровня	$1 s^{2}$	$\ldots 2 s^{2} 2 p^{6}$	$\ldots . .3 s^{2} 3 p^{6}$	\ldots	\ldots	$\ldots . .6 s^{2} 6 p^{6}$
Содержка- ние в зем- ной коре, массовая даля, $\%$	5,2410 ${ }^{-4}$	$1,810^{-3}$	0,93	$3 \cdot 10^{-4}$	$9 \cdot 10^{-6}$	$6 \cdot 10^{-18}$
$\begin{gathered} \text { Нахо未нде. } \\ \text { ние в nou- } \\ \text { pode } \end{gathered}$	Встречаютея в природе исключительно в свободном состоянии, преимущественно в атмосфере					

Возможные валентные состояния:

Основнье характернстики неметаллов VIII A-группы как простых вецеств

Элемент	He	Ne	Ar	Kr	Xe	$R n$
Azpezamное состогние	Бесцветныегазы					
Cocmas молекул	Молекулы одноатомные					
	0,1785	0,89994	1,784	3,7493	5,8971	9,73
Teмпее- ратура nлавления $T_{n u}{ }^{\circ} \mathrm{C}$	-272,05	$-248,52$	-189,22	-156,4	-111,7	-71
Pacmeoримость в 1 л $\mathrm{H}_{2} \mathrm{O}$ при $0^{\circ} \mathrm{C}$, $м \Omega$	10	-	60	-	500	-
Химические cвойcmba	Инертны в обычных условиях. Не и Ne образуют молекулярные соединения с водой, фенолом, толуолом. Ne и Ar образуют только соединения включения			Образуютт соединения со степенями окисления $+2,+4,+6,+8$. Непосредственно реагируют только со фтором и иекоторыми фторидами, другие соединения Kr , Xe и Rn получают косвенным путем		
Способы получения	$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$, Хе являются побочными продуктами при ректификации жидкого воздуха					$\begin{gathered} \text { Раддио- } \\ \text { активный } \\ \text { распад } \\ \text { радия: } \\ { }_{88}^{26} \mathrm{Ra} \rightarrow \\ \rightarrow{ }_{86}^{222} \mathrm{Rn}+ \\ +{ }_{2}^{4} \mathrm{He} . \end{gathered}$
Обтасти применения	В металлургических и химических процессах для создання инертной атмосферы. Соэдание сверхнизких температур (жидкий гелий). Гелий в смеси с 02 используется для дыхания при подводных работах	В электро-вакуумной техниве (для заполнения ламп накаливания)	В ме- таллур- гии и хими- ческнх- процес- сах для созда- ния инерт- ной атмос- феры; в элек- тр- ваку- умной технике	В злек вакуум техник динения XeF и исполь в газов УФ-ла	oой coeKrF, Br ротея x pax	В меди. цине (радоновые ванны) и атомной энергетике

19. ЭЛEMEHTG TPYIIHЫ VILA

19.1. OE円АA XAPAKTEPUCTHEA

Основные сведения

Символ элемента	H	F
Латинское нозвание	Hydrogenium	Fluorum
Русское налвание	Водород	© $_{\text {тор }}$
Год открытиия	1766	1771
Аөторы открытия	Г. Кавепдит	К. Шееле
Содержание ө земной коре, массовал дагя, \%	1,0	6,25-10-2
Основние природнье соединения	В небольштх количествах в свободном состоянии содержится в вулканических и природннх газах. Входит в состав $\mathrm{H}_{2} \mathrm{O}$, бурых и каменных углей, нефти, растительных и животных организзов, некоторых минералов	CaF_{2} (флпоорит), $\mathrm{Na}_{3}\left[\mathrm{AlF}_{6}\right]$ (криолит), $\mathrm{Ca}_{5} \mathrm{~F}\left(\mathrm{PO}_{4}\right)_{3}$ (фгорапатит)

Атомные характеристики

Элемент	H	F
Атомньй (порядковый) номер	1	9
Относительная атомная масса	1,008	18,998
Электронная формула валентного уровня	$1 s^{1}$ \uparrow	$\ldots 2 s^{2} 2 p^{6}$
Первый потенциал ионизации, зB	13,5986	17,4231
Сродствок злектрону, зВ	0,7542	3,448
Электрсотрицательность	2,10	4,10
Степени окисления	-1,+1	-1

Элекхронные конфигурақим атомов в основном состоянии:

$$
\begin{aligned}
& { }_{1} \mathrm{H}-1 \mathrm{~F}^{1} \\
& { }_{\mathrm{F}} \mathrm{~F}-18^{2} 2 s^{2} 2 p^{5} \\
& { }_{17} \mathrm{Cl}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \\
& { }_{36} \mathrm{Br}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5} \\
& { }_{68} \mathrm{I} \quad-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{5} \\
& { }_{85} \mathrm{At}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{5}
\end{aligned}
$$

(S- H p-ЭJEMEHTBI)

гАлОгЕНО

таблица 73
об элементах

Cl	Br	I	At
Chlorum	Bromum	Iodum	Astatium
Хлор	Бром	Иод	Астат
1774	1826	1811	1940
К. Шееле	А. Балар	Б. Куртуа	T. Корсон, К. Маккензи, Э. Сегре
1,7.10-2	1,6.10-4	$4 \cdot 10^{-5}$	-
NaCl (каменная соль), KCl (сильвин), $\mathrm{NaCl} \cdot \mathrm{KCl}$ (сильвинит) $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (карналлит)	В отложениях хлоридов в виде NaBr , $\mathrm{KBr}, \mathrm{MgBr}_{2}$. Содержится также в морской воде и подземныг рассолах	KIO_{3} и KIO_{4} в залежах селитры, подземньх буровых водах, в морских растениях	Практически в природе не встречается (в поверхностном слое земной коры толщиной 1,6 км содер. жится 70 мг At)

таблица 74
галогенов

$C l$	$B r$	I	$A t$
17	35	53	85
35,453	79,904	126,905	209,987
$\ldots 3 s^{2} 3 p^{5}$	$\ldots 4 s^{2} 4 p^{5}$	$\ldots .5 s^{2} 5 p^{5}$	$\ldots 6 s^{2} 6 p^{5}$
	$\boxed{ } \downarrow \downarrow \mid \downarrow \uparrow \downarrow$		
12,9678	11,84	10,4514	9,20
3,614	3,37	3,08	0,145
2,83	2,74	2,21	1,96
$-1,+1,+3,+5,+7$	$-1,+1,+3,+5,+7$	$-1,+1,+3,+5,+7$	$-1,+1,+3,+5,+7$

Астат является радиоактивным элементом. Еще раз отметим, что общность свойств галогенов определяется одинаковым строением их внешнего энергетического уровня (конфигурация валентных электронов в основном состоянии...$n s^{2} n p^{5}$). Все галогены проявляют одинаковую степень окисления - 1 в соединениях с водородом и металлами ($\mathrm{NaF}, \mathrm{CaCl}_{2}, \mathrm{FeI}_{3}$).

Основные физическне свойства

Элемент	H	F	Cl	Br	I	At
Aгрегатное состояние	$\begin{aligned} & \text { Бес- } \\ & \text { цветный } \\ & \text { газ } \end{aligned}$	Газ светложелтого цвета	Газ желтозеленого цвета	Жид кость краснобурого црета	Кристаллы чернофийеноваго ıрета	Кристаллы черносинего цвета
Cocmas молекул	H_{2}	F_{2}	Cl_{2}	Br_{2}	I_{2}	At_{2}
Плотность р, $\kappa г / \boldsymbol{m}^{3}$	89,88	1696	3214	3123	4930	-
Temnepamypa плавления $T_{n v}{ }^{\circ} \mathrm{C}$	$-258,99$	-219,47	-100,83	-7,1	- 113,7	302
Teмпература кипения $T_{\text {кuл }}$ ${ }^{\circ} \mathrm{C}$	-252,72	-187,99	-33,82	58,93	184,5	337
Удельное электросопротивление, мкОм $\cdot \boldsymbol{\mu}$	-	-	10^{14}	1,3•10 ${ }^{17}$	1,3.10 ${ }^{19}$	-

Усиливаются металлические свойства
Окислительные свойства ослабевают

$$
\mathrm{F}^{-}, \quad \mathrm{Cl}^{-}, \quad \mathrm{Br}^{-}, \quad \mathrm{I}^{-}
$$

Усиливаются восстановительные свойства

В подгруппу галогенов входят фтор, хлор, бром, йод, астат, являющиеся р-элементами VII группы главной подгруппы периодической системы Д. И. Менделеева.

19.3. ХЛОР - IIPOCTOE ВЕЩЕСТВО

таблица 76
Основние свойства, получение, применение

19.4. ХЛОРОВОДОРОД,
 Основнне свойства, полученне

Соединение	Физические свойства	Химические свойства
HCl - хлороводород	Газ без цвета с резким запахом, в 1,3 раза тяжелее воздуха, хоропо растворяется в воде	При растворении газа HCl в воде образуется кислота: $\mathrm{HCl}\left(\text { газ) } \xrightarrow[\text { соляная кислота }]{+\mathrm{H}_{2} \mathrm{O}}\right.$
HCl - хлороводородная (соляная) кислота	Бесцветная жидкость. Крепкая соляная кислота "дымит" на воздухе. Плотность равна $1180 \mathrm{kr} / \mathrm{m}^{3}$ Ппри концентрации раствора HCl 35%) и 1190 кг/м \mathbf{m}^{3} (37\%)	Силњная кислота: $\begin{equation*} \tag{1} \end{equation*}$ Качественной реакцией на ион Cl^{-}является ион Ag^{+}: $\begin{gathered} \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \underset{\substack{\text { белый творожи- } \\ \text { cтый осадок }}}{\mathrm{AgCl} \downarrow} \\ \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} \end{gathered}$

Соли соляной кнслоты

Соединение
NaCl - хлорид натрия, каменная соль, галит
KCl - хлорид калия
BaCl_{2} - хлорид бария
ZnCl_{2} - хлорид цинкка
CaCl_{2} - хлорид кальция (безводный)
AlCl_{3} - хлорид алюминия (безводный)
HgCl_{2} - хлорид ртути (II), сулема
AgCl - хлорид серебра (нерастворимая соль)
$\left.\begin{array}{l} \mathrm{Hg}_{2} \mathrm{Cl}_{2} \text { хлорид ртути (I) } \\ \mathrm{CuCl} \\ \text { (каломель) } \\ \text { хлорид меди (I) } \end{array}\right\} \text { нерастворимые соли }$
PbCl_{2} - хлорид свинца (II) (малорастворимая соль)

Способы получения	Области применения
В лаборатории: $\begin{aligned} & 2 \mathrm{NaCl}(\mathrm{~TB})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+ \\ & +2 \mathrm{HCl} \uparrow, \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} \uparrow \end{aligned}$	В химической промыпленности для получения хлороводородной (соляной) кислоты
В специальных поглотительных башнях, где HCl газ поглощается $\mathrm{H}_{2} \mathrm{O} . \mathrm{HCl}$ и $\mathrm{H}_{2} \mathrm{O}$ движутся противопотоком. Промышленное получение газа HCl в этом процессе осуществляется в специяльных установках, где происходит его синтез из H_{2} и Cl_{2} : $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ Полученный газ HCl перемещается снизу вверх навстречу с $\mathrm{H}_{2} \mathrm{O}$, подаваемую сверху (способ противотока)	В химической промышленности для получения ее солей ($\mathrm{BaCl}_{2}, \mathrm{ZnCl}_{2}$ и др.) и как реагент в химических лабораториях, а также для обработки руд, травления металлов; в химическом синтезе, пищевой промыाшленности, медицине

Спрье для получения $\mathrm{NaOH}, \mathrm{Cl}_{2}, \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ и др. Применяется в мыловарении и красильном деле, 'а также как приправа к пище
Ценное удобрение и как реактив в химических лабораториях
В борьбе с вредителями сельского хозяйства (луговым мотыльком, свекловичным долгоносиком)
Пропитка телеграфных столбов и железнодорожных шпал для предохранения их от гниения
Для сушки газов $\left(\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ и в медицине
Катализатор в органическом синтезе
Сильный яд; очень разбавленные растворы HgCl_{2} используются как сильно дезинфицирующее средство; для протравливания семян, дубления кожи, в органическом синтезе
В фотографии
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ используется для изготовления электродов, как катализатор в органических реакциях и как антисептик. CuCl - поглотитель CO в газовом синтезе, катализатор в органическом синтезе.

В химической лаборатории

19.5. пиСЛОРОДНЫЕ СОЕДМНЕНй ХЛОРА

таблица 79
Названия

	Оксид хлора		Кислородсодержащая кислота		Соли кислородсодер. жащих кислот	
	Форму ла	Название	Формула	Назөание	$\omega_{o p-}$ мула	Название
+1	$\mathrm{Cl}_{2} \mathrm{O}$	Оксид хлора (I), хлорноватистый ангидрид	HClO	Хлорноватистая кислота	$\begin{gathered} \mathrm{KClO} \\ \mathrm{Ca}(\mathrm{ClO})_{2} \end{gathered}$	Гипохлорит калия . кальция*
+3	-	-	HClO_{2}	Хлористая кислота	KClO_{2}	Хлорит калия
+4	ClO_{2}	Оксид хлора (IV), диоксид хлора				
+5	-	-	HClO_{3}	Хлорноватая кислота	KClO_{3}	Хлорат калия (берто- летова соль)**
+7	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	Оксид хлора (VII), хлорный ангидрид	HClO_{4}	Хлорная кислота	KClO_{4}	Перхлорат калия

* $\mathrm{Ca}(\mathrm{ClO})_{2}$ получают действием хлора ва порошок $\mathrm{Ca}(\mathrm{OH})_{2}$:
$2 \mathrm{Cl}_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \underbrace{\mathrm{Ca}(\mathrm{ClO})_{2}+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}}_{\text {белильвая (хлорвая) известь }}$.
Применяется для отбеливания хлопчатобумажных тканей, бумаги, хлорирования воды, дезинфекции. $\mathrm{Ca}(\mathrm{ClO})_{2}$ - очень сильный окис-
$\stackrel{\text { литель. }}{\mathbf{4} \mathrm{KClO}_{3}} \xrightarrow{\mathbf{t}=400^{\circ} \mathrm{C}} 3 \mathrm{KClO}_{4}+\mathrm{KCl}, 2 \mathrm{KClO}_{3} \xrightarrow[\text { кат. }\left(\mathrm{MnO}_{2}\right)]{\mathrm{t}^{\cdot}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$.

$\mathrm{HClO}, \mathrm{HClO}_{2}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}$,

таблица 80
Осповные свойства, получение и применение

©mop $^{(F)} \mathrm{F}_{2}$)	Брам (Br_{2})	Иод (I_{2})
Физические свойства		
Светло-желтый газ, paзлагающий воду	Темно-красная жидкость, pacтворимая в $\mathrm{H}_{2} \mathrm{O}$, спирте, эфире	Сероваточерное твердое вещество, хороіто растворимое в спирте, афире, но очень плохо растворимое в воде
Химические сөойстөа		
$\mathrm{F}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HF}$ (со взрывом при любых условиях), $3 \mathrm{~F}_{2}+\mathrm{S} \rightarrow \mathrm{SF}_{6,} 2 \mathrm{~F}_{2}+\mathrm{Xe} \rightarrow \mathrm{XeF}_{4}$	$\begin{aligned} & \mathrm{Br}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HBr} \\ & \mathrm{Br}_{2}+2 \mathrm{~S} \rightarrow \mathrm{~S}_{2} \mathrm{Br}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{2}+\mathrm{H}_{2} \stackrel{\mathrm{t}^{\circ}}{\rightleftarrows} 2 \mathrm{HI}, \\ & \mathrm{I}_{2}+2 \mathrm{~S} \rightarrow \mathrm{~S}_{2} \mathrm{I}_{2} \end{aligned}$
C друтими простыми веществами $\mathrm{F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ реагируют, как хлор (см. табл. 76)		
$2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}$ («горение воды во фторе»). Эта реакгрия имеет несколько стадий: $\begin{gathered} \mathrm{H}_{2} \mathrm{O}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}+[\mathrm{O}], \\ \mathrm{H}_{2} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \end{gathered}$ (пероксид водорода) $\begin{gathered} \mathrm{F}_{2}+[\mathrm{O}] \rightarrow \mathrm{OF}_{2}- \\ \text { (фторкд квслорода) } \\ \mathrm{O}_{2}+[\mathrm{O}] \rightarrow \mathrm{O}_{3}-\text { озон. } \\ 2 \mathrm{NaCl}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NaF}+\mathrm{Cl}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{NaI}+\mathrm{Br}_{2} \rightarrow \\ 2 \mathrm{NaBr}+\mathrm{I}_{2} \end{gathered}$	
Способы получения		
	В лаборатории аналогично получе-ниюо хлора.	
Электролиз расплава бифторида калия KF . HF в свинцовои ашшаратуре	В промышлленности: $\begin{aligned} & 2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow \\ & \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2} \end{aligned}$	В промышленности: $\begin{gathered} 2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow \\ \rightarrow \mathrm{KCl}+\mathrm{I}_{2} \end{gathered}$
Области применения		
В синтезе полимерных материалов (фторопласты), как окислитель ракетного топлива, жидкости (фреоны) для холодильных машкн	Для приготовления лекарств. Для получения различньых органических веществ, в лакокрасочной промқпшленности	Для приготовления лекарств (йодная настойка - 5%-й раствор I ${ }_{2}$ в спирте).

19.7. БМОЛОГПЧЕСКАЯ РОЛЬ ГАЛОГЕНОВ

Фтор играет очень важную роль в жизни растений, животных и человека. Вез фтора невозможно нормальное развитие костного скелета и особенно зубов. Содержание фтора в костях составляет 80-100 мг на 100 г сухого вещества, а в составе эмали зубов - $100-180$ мг на 100 г сухого вещесгва. В эмали фтор присутствует в виде соединения $\mathrm{Ca}_{4} \mathrm{~F}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ и придает ей твердость и белизну. При недостатке фтора в организме человека происходит поражение зубной ткани (кариес), а избыток его способствует заболеванию зубов флюорезом. Оптимальным считается содержание фтора в пресной воде $0,7-1,0$ мг/л. Много фтора содержится в злаках, чайном листе, щавеле, горохе, грибах, салате, капусте, свекле, редьке, зеленом луке, моркови, фасоли, черешне, винограде, огурцах. Суточная потребность человека во фторе составляет 2-3 мг.

Хлор (хлор-ион) более важен для жизнедеятельности животных и человека, чем для растений. Он входит в состав почек, легких, селезенки, крови, слюны, хрящей, волос. Ионы хлора регулируют буферную систему крови. Хлорид натрия является составной частью плазмы крови и спинномозговой жидкости и участвует в регуляции водного обмена в организме. Свободная соляная кислота входит в состав желудочного сока всех млекопитающих и активно участвует в акте пищеварения. У здорового человека в желудке содержится $0,2-0,3 \%$ соляной кислоты. Недостаток хлора в организме приводит к тахикардии, снижению артериального давления, судорогам.

Достаточное количество хлора содержится в таких овощах, как сельдерей, редис, огурцы, капуста белокочанная, укроп, перец, лук, артишок.

Бром также входит в число необходимых микроэлементов, больше всего его содержится в гипофизе, крови, щитовидной железе, надпочечниках. Бромиды в небольших дозах ($0,1-0,3$ г для взрослого человека) положительно действуют на центральную нервную систему как

усилители процессов торможения в коре головного мозга. В природе бромиды накапливаются в таких растениях, как рожь, пшеница, ячмень, картофель, морковь, черешня, яблоки. Много брома содержится в голландском сыре.

Йод в организме человека начинает накапливаться еще в утробе матери. В гормоне щитовидной железы человека - тироксине - содержится 60% связанного йода. Этот гормон с током крови поступает в печень, почки, молочные железы, желудочнокишечный тракт. Недостаток иода в организме человека вызывает такие заболевания, как эвдемический зоб и кретинизм, при котором замедляется рост и развивается умственная отсталость. В сочетании с другими элементами йод способствует росту и упитанности животных, улучшает их здоровье и плодовитость.

Основными поставщиками иода для человека служат злаки, баклажаны, фасоль, капуста белокочанная и цветная, картофель, лук, морковь, огурцы, тыква, салат, морская капуста, кальмары.

20. ЭЛЕМЕНТЫ ГРУПII VIA (р-ЭЛЕMEHTB)

20.1. OБIIAS XAPARTEPYCTHKA ЭЛEMEHTOB

таблица 81
Основные сведения об элементах

Символ әлемента	0	S	Se	Te	Po
Латинское название	Oxygenium	Sulfur	Selenium	Tellurium	Polonium
Русское название	Кислород	Cepa	Селен	Теллур	Полоний
Год от. крытия	1770-1774	Известна с древних времен	1817	, 1782	1898
Авторы открытия	K. Шееле, Д. Ж. Пристли	-	Й. Верцелиус	©. Мюллер	П. Кюри и М. Селодовская. Кюри
Содер- жсание в зеной коре, массовая доля, \%	47,0	$5 \cdot 10^{-2}$	$8 \cdot 10^{-5}$	$1 \cdot 10^{-7}$	$2 \cdot 10^{-24}$
Основньие nриродные соединения	В свободном состоянии - в атмосфере, в связанном входит в состав $\mathrm{H}_{2} \mathrm{O}, \mathrm{SiO}_{2}$, снтикатов, аломосиликатов	Самородная сера, в вулканических газах в виде $\mathrm{H}_{2} \mathrm{~S}$ и $\mathrm{SO}_{2} ; \mathrm{FeS}_{2}$ (пирит); PbS (галенит); ZnS (сфалерит); $\mathrm{CaSO}_{4} \cdot \mathrm{HH}_{2} \mathrm{O}$ (ruпс); $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathbf{1 0 H}_{2} \mathrm{O}$ (глауберова соль)	В виде примесей селенидов в рудах FeS_{2}, CuFeS_{2}, ZnS	Сопут. ствугощий кометонент в минералах AuAgTe_{4} (сильванит) $\mathrm{Ag}_{2} \mathrm{Te}$ (гессит)	Продукт радиоактивного распада в минералах тория и урана

Атомные характеристнки

Элемент	0	S	Se	$T e$	Po
Атамный (порядковый) номер	8	16	34	52	84
Относительная атанная масса	15,9994	32,066	78,96	127,60	208,9824
Электронная структурс өалентного уровня	$\begin{array}{\|c\|c\|} \hline 2 s & 2 p \\ \hline \downarrow \uparrow & \downarrow \uparrow \\ \hline \end{array}$	$\downarrow \uparrow$ $\uparrow \uparrow$		период nd	$=3,4,5,6$
Радйус amoма, ни	0,073	0,102	0,116	0,136	0,146
$\begin{gathered} \text { Перяый } \\ \text { потенциал } \\ \text { ионизаиии, } \\ 3 B \end{gathered}$	13,618	10,360	9,752	9,010	8,430
\qquad	1,467	2,077	2,020	1,960	1,320
Электро-ompu-цательность	3,50	2,60	2,48	2,01	1,76
Степени окисления	$\begin{gathered} -1,-2, \\ +2^{\star} \end{gathered}$	$\begin{aligned} & -2,+2, \\ & +4,+6 \end{aligned}$	$\begin{aligned} & -2,+2, \\ & +4,+6 \end{aligned}$	$\begin{aligned} & -2,+2, \\ & +4,+6 \end{aligned}$	$\begin{gathered} -2,+2, \\ +4 \end{gathered}$

* Только в оксиде фтора $\mathrm{F}_{2} \mathrm{O}$.

Электронные конфигурации атомов в основном состоянии:

$$
\begin{aligned}
& { }_{8} \mathrm{O}-1 s^{2} 2 s^{2} 2 p^{4} \\
& { }_{16} \mathrm{~S}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} \\
& { }_{34} \mathrm{Se}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4} \\
& { }_{52} \mathrm{Te}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{4} \\
& { }_{84}^{\mathrm{Po}}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{4} \\
& \text { Элементы группы VI A имеют общее назввние «халь- } \\
& \text { когены», что означает чобразующие руды». Сходство хи- } \\
& \text { мических свойств халькогенов объясняется одинаковым } \\
& \text { строением внешнего энергетического уровня их атомов }- \\
& \text {...ns } n p^{4} \text { (см. табл. 82). }
\end{aligned}
$$

20.2. XASBROTRHB- IPOCTBE BEMECTBA

таолица 83
Некоторые свойства халькогенов

Элемент	0	S	Se	Te	Po
Aлrompoпические формья	Кислород O_{2}, озон O_{3}		β-Se (гекса-гональный селен)	γ-Te (гекса-гональный теллур)	α-Po
Azpezатное состояние при обычныих условиях	Газы	$\begin{aligned} & \text { Кри- } \\ & \text { сталл- } \\ & \text { ческое } \\ & \text { веще- } \\ & \text { ство } \end{aligned}$	Кри-сталлическое вещество с ме-таллическим блеском	Метал-лоподобное кристаллическое вещество	Мягкий металл
цвет		ЖелтЫй	Серый	Cepe-бристобельй	Cepe-бристобелый
Cocma молекул	O_{2} и O_{3}	S_{8}	Se ${ }_{\text {o }}$	Te	-
Кристаллическая решетка	-	Моле-кулярная ромбическая	Цепная молекулярная гекса-гональная	Цепная молекулярная гексагональная	Atomная кубическая
$\begin{gathered} \text { Ілот- } \\ \text { ность }(\mathrm{\rho}), \\ \kappa z / \mathrm{m}^{\mathrm{g}} \\ (299 \mathrm{~K}) \\ \hline \end{gathered}$	$1429\left(\mathrm{O}_{2}\right)$	2070	4790	6240	9320
Temnepamypa плавления, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} -218,2 \\ \left(\mathrm{O}_{2}\right) \end{gathered}$	118	217	449,7	254
Temnepamypa кипения, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} -182,812 \\ \left(\mathrm{O}_{2}\right) \end{gathered}$	444,824	685,100	990,000	962,000
Удельное злектрическое conpoтиеление, мкОм м	-	1,91•10 ${ }^{21}$	8,0.10 ${ }^{4}$	3,710 ${ }^{3}$	-

Свойства, получение, применение кислорода н озова

O_{2} - бесцветный газ (его свойства см. в табл. 83). O_{3} - газ светло-голубого цвета с характерным запахом, растворим в воде лучше кислорода; $T_{\text {пп }}=-251^{\circ} \mathrm{C}, T_{\text {кип }}=-112^{\circ} \mathrm{C}$
Химические свойства
Взаимодействие со сложными веществами: $\begin{gathered} \mathrm{CH}_{4}+2 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}, \quad 4 \mathrm{NH}_{3}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}_{2} \uparrow \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow . \\ 2 \mathrm{O}_{3}+\mathrm{PbS} \rightarrow \mathrm{PbSO}_{4}+\mathrm{O}_{2}, \\ \mathrm{O}_{3}+2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+2 \mathrm{KOH}+\mathrm{O}_{2} . \end{gathered}$ Озон разрушает резину, воспламеняет эфир, спирт, скипидар. Озон сильныв̆ окислитель (сильнее, чем O_{2})
В промышленности: а) из жидкого воздуха; б) электролизом воды: $2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { эл. ток }]{ } 2 \mathrm{H}_{2} \uparrow+\mathrm{O}_{2} \uparrow$. В лаборатории: $2 \mathrm{NaNO}_{3} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}, 2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$, $2 \mathrm{KMnO}_{4} \xrightarrow{t^{\circ}} \mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2} .$ Озон получают действием тихого электрического разряда в приборе озонаторе: $3 \mathrm{O}_{2} \rightleftarrows 2 \mathrm{O}_{3}$. В природе озон образуется при грозовьх разрядах и при окислении смолы хвойных деревьев
Области применения
Кислород используют при сжигании топлива в металлургии при плавке чугуна и стали; в специальных газовых горелках для сварки и резки металлов; в кислородных приборах (аквалангах, масках). Кислород необходим для дыхания живнх организмов, для окисления углеводов, жиров и белков Озон применяется как дезинфицирующее средство для очистки питъевой воды (убивает микроорганизмы). Обладает также отбеливающим действием

Осповные свойства, получение и примедепне серы

20.3. СЕРОВОДОРОД М СУЛЬфГДЫ

Основные свойства, получевие

Физические свойства	Химические свойства	Способы получения
Соединения		
$\mathrm{H}_{2} \mathrm{~S}$ - сероводород, CuS - сульфид меди (II) (черный), PbS - сульфид свинца (II) (черный), CdS - сульфид кадмия (желтый), ZnS сульфид цинка (белый), MnS - сульфид марганца (II) (розовый), SnS - сульфид олова (II) (коричневый), $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ - сульфид сурьмы (II) (оранжевый)		
$\mathrm{H}_{2} \mathrm{~S}$ - бесцветный газ с характерным запахом тухлых яиц, ядовит, растворим в воде и сширте $\begin{gathered} T_{\text {ar }}= \\ -85,54^{\circ} \mathrm{C} \\ T_{\text {aw }}= \\ -60,35^{\circ} \mathrm{C} \end{gathered}$ В при. роде $\mathrm{H}_{2} \mathrm{~S}$ выделяется в составе вулканических газов; образуется при гниении растительных и животных организмов	Горит на воздухе: $\begin{gathered} 2 \mathrm{H}_{2} \mathrm{-2}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \stackrel{+4}{\mathrm{SO}_{2}} . \\ \mathrm{H}_{2} \mathrm{~S}-\text { сильный } \\ \text { восстановитель: } \\ \mathrm{H}_{2} \mathrm{~S}+\mathrm{Br}_{2} \rightarrow \mathrm{~S}+2 \mathrm{HBr} \\ \mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2} \rightarrow \mathrm{~S}+2 \mathrm{HI} . \end{gathered}$ При растворении газа $\mathrm{H}_{2} \mathrm{~S}$ в воде получается сероводородная кислота (слабая, двухосновная): $\mathrm{H}_{2} \mathrm{~S} \rightleftarrows \mathrm{H}^{+}+\mathrm{HS}^{-}$ 1-я ступень, $K_{1}=9,5 \cdot 10^{-8}$ $\mathrm{HS}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{S}^{2-} \text { - 2-я сту- }$ $\text { пень, } K_{2}=1,0 \cdot 10^{-14} \text {. }$ Сероводородная кислота образует два ряда солей: кислые (гидросулифиды) и средние (сульфиды). Гидросульфиды раство- римы в воде п супествуют только в растворе. Сульфиды щелочных металлов и аммония растворимы в воде и цодвергаются гцдролизу: $\begin{gathered} \mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NaHS}+\mathrm{NaOH}, \\ \mathrm{~S}^{2-}+\mathrm{HOH} \rightleftarrows \mathrm{HS}^{-}+\mathrm{OH}^{-} ; \\ \mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}_{2} \mathrm{~S} \uparrow \end{gathered}$	$\begin{gathered} \mathrm{S}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S} \\ \text { (пропускание } \mathrm{H}_{2} \text { через } \\ \text { кишящую жидкук серу). } \end{gathered}$ В лаборатории: в ашпарате Киппа воздействием соляной кислоты на сульфид железа (I): $\mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{~S} \uparrow$ Сульфидт получают действием сероводорода на соли других кислот: $\begin{gathered} \mathrm{H}_{2} \mathrm{~S}+\mathrm{CuSO}_{4} \rightarrow \mathrm{CuS} \downarrow+ \\ +\mathrm{H}_{2} \mathrm{SO}_{4}, \\ \mathrm{H}_{2} \mathrm{~S}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbS} \downarrow+ \\ +2 \mathrm{HNO}_{8} . \end{gathered}$ Нейтрализация щелочей сероводородной кислотой: $\begin{aligned} 2 \mathrm{NaOH} & +\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Na}_{2} \mathrm{~S}+ \\ & +2 \mathrm{H}_{2} \mathrm{O} . \end{aligned}$ Синтез из простых веществ и обменные реакции: $\begin{gathered} \mathrm{Zn}+\mathrm{S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{ZnS}, \\ \mathrm{FeCl}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \mathrm{FeS} \downarrow+ \\ +2 \mathrm{NH}_{4} \mathrm{Cl} \end{gathered}$

20.4. пНСЛОРОДНЬЕ

Основные свойства, получение и применение

Соединение	Фијицеские cboŭcmba	Химические свойства
$\begin{gathered} \mathrm{SO}_{2}- \\ \text { оксид } \\ \text { серы (IV), } \\ \text { серни- } \\ \text { стьй } \\ \text { वнги- } \\ \partial р и д \end{gathered}$	Газ без цвета, с резниим запахом, хорошо растворимый в воде. При $-10^{\circ} \mathrm{C}$ переходдт в жидкость, а при $-73^{\circ} \mathrm{C}$ превращается втвердое вещество	Тишичный кислотный оксид: $\begin{gathered} \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{SO}_{2}+\mathrm{K}_{2} \mathrm{O} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{3}, \\ \mathrm{SO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaHSO}_{3}, \\ \mathrm{SO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} . \\ \stackrel{+4}{\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S}^{-2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}^{0},} \\ \stackrel{+4}{\mathrm{SO}_{2}}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}^{\circ} \rightarrow \mathrm{H}_{2}{\stackrel{+6}{ } \mathrm{SO}_{4}+2 \mathrm{HBr}^{-1}}_{2 \mathrm{SO}_{2}+\mathrm{O}_{2} \stackrel{\text { кат. }}{\rightleftarrows} 2 \mathrm{SO}_{3}+198 \text { кДж. }}^{\text {к. }} . \end{gathered}$
$\begin{gathered} \mathrm{H}_{\mathrm{p}} \mathrm{SO}_{s}- \\ \text { серни. } \\ \text { стая } \\ \text { кислот } \end{gathered}$	Бесцветная жидкость	$\mathrm{H}_{2} \mathrm{SO}_{3}$ - кислота слабая, летучая: $\mathrm{H}_{2} \mathrm{SO}_{3} \rightleftarrows \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \uparrow$ Проявляет все характерные для кислот свойства: $\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O}, \\ & \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{Na}_{2} \mathrm{SiO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow, \\ & \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{CaO} \rightarrow \mathrm{CaSO}_{3}+\mathrm{H}_{2} \mathrm{O} . \\ & \hline \end{aligned}$
$\mathrm{SO}_{s}-$ оксид серы (VI). серный анги- дрид (mpu- оксид серы)	Бесцветная жидкость, $T_{\mathrm{san}}=45^{\circ} \mathrm{C}$; при $T<$ $17^{\circ} \mathrm{C}$ превращается в белую кристаллическую массу	Типичный кислотный оксид: $\begin{gathered} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+392,8 \text { кДж, } \\ \mathrm{SO}_{3}+\mathrm{CaO} \rightarrow \mathrm{CaSO}_{4}, \\ \mathrm{SO}_{3}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}(\text { к }) \rightarrow \substack{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \\ \text { олеум }} \\ \hline \end{gathered}$

оксидов и гндроксндов серы

Способы палучения	Области применения
В промышленности: сжигание серы или обжиг пирита: $\begin{gathered} \mathrm{S}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SO}_{2}, \\ 4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \xrightarrow{\stackrel{\mathrm{t}^{\circ}}{\rightarrow}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2} . \end{gathered}$ В лаборатории: $\begin{gathered} \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \uparrow \\ \mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \xrightarrow{\mathbf{t}} \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \uparrow \end{gathered}$	В производстве серной кислоты, SO_{3}, а также сулфитов, гидросульфитов, тиосульфатов и др.; для отбеливания щелка, щерсти, соломы, как средство для дезинфекции, для консервирования фруктов, лгод идр.
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ - существует только в разбавленных растворах	Для отбеливания шерсти, шелка, соломы и др.
$\begin{gathered} 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{450^{\circ} \mathrm{C}} 2 \mathrm{~V}_{2} \mathrm{O}_{5} ; \\ \text { прокаливание } \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \text { и } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}: \\ \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{3} \uparrow \end{gathered}$	Для получения серной кислоты и олеума, хлорсульфоновой кислоты; как дегидратирующий агент при полүчении безводной HNO_{3}

Соединение	Физические сөойства	Химические сөойства
$\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{pepras} \\ \text { кислотa } \end{gathered}$	Тяжелая, вязкая, бесцветная жидкость без запаха. $\begin{gathered} \text { Плотность } \\ 1840 \text { кг } / \mathbf{m}^{3} \\ \text { рри } \\ \omega_{\text {няァо }}=96 \% \end{gathered}$	Разбавленная $\mathrm{H}_{2} \mathrm{SO}_{4}$ проявляет характерные свойства кислот. Сильная пвухосновная кислота: $\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \\ \mathrm{HSO}_{4}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \\ \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Zn} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \uparrow \\ 3 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ 3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Fe}(\mathrm{OH})_{3} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{HCl} \end{gathered}$ Конщентрированная $\mathrm{H}_{2} \mathrm{SO}_{4}$ энергично поглощает воду. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k})$ реагирует почти со всеми металлами (кроме Au и Pt) и некоторыми неметаллами: $\begin{gathered} \mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CuSO}_{4}+\mathrm{SO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \xrightarrow{\mathrm{t}^{\circ}} \mathrm{ZnSO}_{4}+\mathrm{SO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \\ 3 \mathrm{Zn}+4 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \xrightarrow{\mathrm{t}^{\circ}} 3 \mathrm{ZnSO}_{4}+\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O} \\ 4 \mathrm{Zn}+5 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \xrightarrow{\mathrm{t}^{\circ}} 4 \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{~S} \uparrow+4 \mathrm{H}_{2} \mathrm{O} . \\ 5 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k})+2 \mathrm{P} \rightarrow 5 \mathrm{SO}_{2} \uparrow+2 \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \\ 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{\kappa})+\mathrm{C} \rightarrow 2 \mathrm{SO}_{2} \uparrow+\mathrm{CO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \\ 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k})+\mathrm{S} \rightarrow 3 \mathrm{SO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} . \\ \mathrm{H}_{2} \mathrm{SO}_{4}(\kappa) \text { обугливает древесину, } \\ \text { бумагу, сахар: } \\ \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{\kappa}) \rightarrow 12 \mathrm{C}+ \\ +11 \mathrm{H}_{2} \mathrm{O} . \end{gathered}$ C водой $\mathrm{H}_{2} \mathrm{SO}_{4}$ образует гидраты: $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$

Cпособы получения
Контактный способ получения
$\mathrm{H}_{2} \mathrm{SO}_{4}:$

1) получение $\mathrm{SO}_{2}:$
$4 \mathrm{FeS}+11 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathbf{2 \mathrm { Fe } _ { 2 } \mathrm { O } _ { 3 } + 8 \mathrm { SO } _ { 2 } \uparrow ;}$
2) окисление SO_{2} в SO_{3} :

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow[\mathrm{~V}_{2} \mathrm{O}_{6}]{440^{\circ} \mathrm{C}} 2 \mathrm{SO}_{3} ;
$$

3) растворение SO_{8}

$$
\text { в } \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \text { : }
$$

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \rightarrow \underset{\text { oлеум }}{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}}
$$

Разбавление $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ водони и получение $\mathrm{H}_{2} \mathrm{SO}_{4}$ нужной концентрации:

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Применяется почти во всех отраслях промышленности.
Для получения азотных и фосфатных удобрений (супер. фосфат, сульфат аммония) для получения $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (железный купорос) и $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (медный купорос); красителеи, пластмасс, взрывчатых веществ и др.

Для производства других

 кислот ($\mathrm{HF}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HCl}$, $\mathrm{CH}_{3} \mathrm{COOH}$ и др.) и удобрений.Для очшстки нефтепродуктов (бөнзин, керосин, смазочные масла), получөния дғммообразуюших и взрывчатых веществ, эфиров, этанола, капролактама; для разложения комплексных руд в гидрометаллургии и др.

Соли серной кислоты, их свойства и применение

20.5. БНОЛОГИЧЕСКАЯ РОЛЬ ХАЛЬХОГЕНОВ

Сера играет важную роль в жизни растений, животных и человека. В животных организмах сера входит в состав почти всех белков, в серосодержащие аминокислоты цистин и метионин, а также в состав витамина B_{1} и гормона инсулина. При недостатке серы у овец замедляется рост шерсти, а у птиц отмечена плохая оперяемость.

Из растений больше всего много серы содержит капуста, салат, шпинат. Вогаты серой также стручки гороха и фасоли, брюква, редис, репа, лук, хрен, тыква, огурцы; бедны серой арбуз и красная свекла.

Селен и теллур по химическим свойствам очень похожи на серу, но по физиологическим являются ее антагонистами. Для нормального функционирования организма необходимы очень малые количества селена. Селен положительно влияет на состояние сердечно-сосудистой системы, образование красных кровяных телец, повышает иммунные свойства организма. Повышенное количество селена вызывает у животных заболевание (алкалоз), проявляющееся в исхудании и сонливости. Недостаток селена в организме животных ведет к нарушению работы сердца, органов дыхания, повышается температура тела и может даже наступить смерть. Существенное влияние селен оказывает на зрение животных. Например, у оленей, которые отличаются высокой остротой зрения, в сетчатке глаз селена содержится в 100 раз больше, чем в других частях тела. В растительном мире много селена содержат все бобовые растения. Особенно большое его количество накапливает растение астрагал.

Физиологическая роль теллура для растений, животных и человека изучена меньше, чем селена. Известно, что теллур менее токсичен по сравнению с селеном и соединения теллура в организме быстро восстанавливаются до элементарного теллура, который в свою очередь соединяется с органическими веществами.

21. ЗЛEMEHTB IPYIIIB VA ($\mathrm{D}-3$ JIEMEREBE)

21.1. OBMA XAPAXTEPMCITR OIEMEATOB

таблица 89
Общие сведения 06 элементах

Cumeor згеменma	N	P	As	Sb	Bi
Латинское название	Nitrogenium	Phosphorus	Arsenicum	Stibium	Bismuth um
Pyсское название	A30t	Фосфор	Мьшьяк	Сурьма	Висмут
Tod omкрытия	1772	1669	Получен в Средние века	$\begin{gathered} \text { По- } \\ \text { лучена } \\ \text { в Сред- } \\ \text { ние } \\ \text { века } \\ \hline \end{gathered}$	1739
Asmop открьятия	Д. Резерфорд	Г. Вранд	-	-	И. Motr
Codep. жание в земной коре, массоваs даля, \%	0,04	8,0.10-2	$5 \cdot 10^{-4}$	$5 \cdot 10^{-6}$	$2 \cdot 10^{-5}$
Основнине npuродние соединения	Основной компонент воздуха (78,2\% по объему); NaNO_{3} (чнлтйская селитра), $\mathrm{KNO}_{\mathbf{I}_{\text {(ин }}}$ (дийская селитра)			$\begin{gathered} \mathrm{Sb}_{2} \mathrm{~S}_{3} \\ \text { (антимо- } \\ \text { нॉкт, илाॅ } \\ \text { сурь- } \\ \text { мяннай } \\ \text { 6леск) } \end{gathered}$	$\mathrm{Bi}_{2} \mathrm{~S}_{3}$ (висмутин, вли вис- мутовни блеск), $\mathrm{Bi}_{2} \mathrm{O}_{3}$ (бисмит, или висмуто. вая охра), (ВіО) ${ }_{2} \mathrm{CO}_{3}$ (висмутит)

Электронные конфигурации атомов в основном состоянии:

```
\({ }_{7} \mathrm{~N}-1 s^{2} 2 s^{2} 2 p^{8}\)
\({ }_{15} \mathrm{P}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}\)
\({ }_{33} \mathrm{As}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{8}\)
\({ }_{61} \mathrm{Sb}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{8}\)
\({ }_{88} \mathrm{Bi}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{3}\)
```

Атомные характеристики

Элемент	N	P	$A s$	$S b$	$B i$
Атомньй (nо- рядковый) номер	7	15	33	51	83
Oтносительная атомная масса	14,01	30,97	74,92	121,75	208,98
Электронная формула ва- лентного уровня	$\ldots 2 s^{2} 2 p^{3}$	$\ldots 3 s^{2} 3 p^{3}$	$\ldots 4 s^{2} 4 p^{3}$	$\ldots 5 s^{2} 5 p^{3}$	$\ldots 6 s^{2} 6 p^{3}$
Сродство к электрону, ${ }^{3} B$	$-0,21$	0,8	1,07	0,94	0,95
Электроотри- цательность	3,07	2,10	2,20	1,82	1,67
Степени окис- ления	$-3,-2,-1$, $+1,+2$, $+3,+4,+5$	$-\mathbf{3 , + 1 ,}$ $+3,+4$, +5	$-3,+3,+5$	$-3,+3,+5$	$-3,+3,+5$

таблица 91
Основные физнческие свойства простыхх веществ

Элемент	N	P	As	Sb	Bi
Cocmas молекул	N_{2}	P_{4}	-	-	-
Аллотропические формьь nри обычнвих условиях	A30T (одна форма)	Вельй, красный, черный фосфор	Металлический (серый) мышшвяк	Серая сурьма	Висмут (одна форма)
Azpezamное состаяние	Газ	Кристаллические вещества	Металлоподобное кристаллическое вещество	Металлоподобное кристаллическое вещество	Мягкий металл
Цеет	Весцветный	Белый, красный, черный	Серый	Серебри-сто-белый	Серебри-сто-белый
Плотность, $\kappa 2 / \boldsymbol{M}^{3}$	1250,6	$\begin{gathered} 1820\left(\mathrm{P}_{4}\right) \\ 2200\left(\mathrm{P}_{\text {кр }}\right) \\ 2690 \\ \left(\mathrm{P}_{\text {чера }}\right) \end{gathered}$	5780	6691	9747
Temnepamypa плаеления, ${ }^{\circ} \mathrm{C}$	-209,71	$\begin{aligned} & 44,3\left(\mathrm{P}_{4}\right) \\ & 410\left(\mathrm{P}_{\mathrm{xp}}\right) \end{aligned}$	817 (под давлением)	630,89	271,5

Усиление металлических свойств
\mathbf{N}, \mathbf{P} - типичные неметаллы, As и Sb проявляют некоторые металлическине свойства, у Ві преобладают металлические свойства

21.2. A30T EAN IFOCTOE BEHECTBO

Основные свойства, получение

$Ф_{\text {изические свойства }}$

Чистый азот - бесцветный газ, без запаха, плохо растворимый в воде; при сильном охлаждении под высоким давлением преврашается в жидкость.

$$
\begin{gathered}
\mathrm{T}_{\mathrm{nn}}=-210^{\circ} \mathrm{C}, \\
\mathrm{~T}_{\mathrm{kn} \mathrm{n}}=-195,8^{\circ} \mathrm{C} .
\end{gathered}
$$

В природе 2 стабильных изотопа: ${ }^{14} \mathrm{~N}$ и ${ }^{15} \mathrm{~N}$

Химические свойства

В молекуле N_{2} тройная связь между атомами ($\mathrm{N} \equiv \mathrm{N}$), состоящая из одной σ - и двух π-связей (см. рис. 13, с. 80):
Молекула N_{2} имеет высокую энергию связи (946 кДж/моль), и этим объясняется малая реакционная способность азота при обычной температуре.

$$
\begin{aligned}
& 6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N} \text { (при комнатной температуре); } \\
& 2 \mathrm{Al}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{AlN}, 3 \mathrm{Ca}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Ca}_{3} \mathrm{~N}_{2} \text {, } \\
& 3 \mathrm{Mg}+\mathrm{N}_{2} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{Mg}_{3} \mathrm{~N}_{2}, 2 \mathrm{~B}+\mathrm{N}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{BN}, \\
& \text { нитрнд бора } \\
& \mathrm{N}_{2}+\mathrm{O}_{2} \stackrel{\mathrm{t}^{\circ} \text { алектрнческой }}{\rightleftarrows} 2 \mathrm{NO} \\
& \text { дуги (} \sim 3000-4000^{\circ} \mathrm{C} \text {) } \\
& \text { (в атмосфере при грозовых разрядах) } \\
& \mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow[\text { кar. }]{\mathrm{t}^{\circ}, \mathrm{p}} 2 \mathrm{NH}_{3}
\end{aligned}
$$

Способы получения

В промыпленности: фракционная перегонка жидкого воздуха. Сначала оттоняется азот ($\mathrm{T}_{\mathrm{xпп}}=-195,8^{\circ} \mathrm{C}$), а затем кислород ($\mathrm{T}_{\text {кпп }}=$ $=-183^{\circ} \mathrm{C}$).
В лаборатории:
a) реакции окисления NH_{3} :

$$
2 \mathrm{NH}_{3}+3 \mathrm{CuO} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \uparrow+3 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}, \quad 4 \mathrm{NH}_{3}+3 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} ;
$$

б) реакции внутримолекулярного окисления-восстановления:

$$
\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}, \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \uparrow+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O} ;
$$

в) восстановление HNO_{3} :

$$
12 \mathrm{HNO}_{3(\rho)}+5 \mathrm{Mg} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \uparrow+5 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Осповные свойства п получепие

Физические свойстеа	Химические свойства	Способы получения
$\mathbf{N H}_{3}$ - аммнак До $10 \% \mathrm{NH}_{3}$ в воде - нашатырныг стнрт, $18-25 \%$-й раствор NH_{3} - аммиачная вода		
Газ с резким, удуші" ливым запахом; хорошо растворим в воде B 1 объеме $\mathrm{H}_{2} \mathrm{O}$ pacтворяется 700 объемов NH_{3} при $20^{\circ} \mathrm{C}$ $\begin{gathered} p=101,325 \\ \text { кПa). } \end{gathered}$ $\begin{gathered} T_{\text {uan }}=\stackrel{=}{-33,4^{\circ}}, \end{gathered}$ $\begin{gathered} T_{\text {min }}= \\ -77,8^{\circ} \mathrm{C} \end{gathered}$ Температура само-воспламенения $650^{\circ} \mathrm{C}$	$\mathrm{NH}_{3}+\mathrm{HCl} \rightleftarrows \mathrm{NH}_{4} \mathrm{Cl}$ (об образовании ковалентной связи по донорноакцепторному механизму см. раздел 5.3) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (равновесие реакций с кислотами сдвигается влево при повышении температуры). $\begin{gathered} \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4} \mathrm{OH}, \\ 2 \mathrm{NH}_{3} \stackrel{\mathrm{t}^{\circ}}{\rightleftarrows} \mathrm{N}_{2}+3 \mathrm{H}_{2}, \\ 4 \mathrm{NH}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}, \\ 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\text { кat }} 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}, \\ 8 \mathrm{NH}_{3}+3 \mathrm{Br}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{Br}, \\ 2 \mathrm{NH}_{3}+3 \mathrm{CuO} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	B промышленности: a) $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ $\xrightarrow[\mathrm{p} \cong 30 \mathrm{~m} \Pi \mathrm{a}]{\mathrm{t}^{\circ} \cong 450^{\circ} \mathrm{C}} 2 \mathrm{NH}_{3}$ (катализатор губчатое железо с добавками $\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{K}_{2} \mathrm{O}$ и др.). В лаборатории: $\begin{gathered} \text { a) } 2 \mathrm{NH}_{4} \mathrm{Cl}+ \\ \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \\ \rightarrow 2 \mathrm{NH}_{3} \uparrow+\mathrm{CaCl}_{2}+ \\ +2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ б) $\mathrm{AlN}+3 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{t}^{\circ}}$ $\xrightarrow{\mathrm{t}^{\circ}} \mathrm{Al}(\mathrm{OH})_{3} \downarrow+\mathrm{NH}_{3} \uparrow ;$ вынускантся таноже жхидкий аммпик и его водные растворы: 1) нашатырный спирт - (содержание NH_{3} составляет 10% по массе); 2) аммиачная вода (содержание NH_{3} 28-29\% по массе), идущая на удобренин
$\mathrm{NH}_{4} \mathrm{OH}$ - гидроксид аммония		
Жидкость с запахом аммиака	Слабое основание (степень диссоциации $\alpha=1,3 \%$: $\begin{gathered} \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{t}^{\circ}}{\rightleftarrows} \mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O} \rightleftarrows \\ \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} ; \\ \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4} \mathrm{OH}$

$\boldsymbol{\Phi}_{\text {изические }}$ свойства	Химические свойства	Способы получения
Соли аммония: $\mathrm{NH}_{4} \mathrm{Cl}$ - хлорид аммония, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ - нитрат аммония, $\mathrm{NH}_{4} \mathrm{NO}_{2}$ - нитрит аммония, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ - дихромат аммония, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ - карбонат аммония, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ - сульфат аммония, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ - сульфид аммония, $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ - ацетат аммония, $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ - гидрокарбонат аммония, $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ - дигидроортофосфат аммония		
Tвepдые кри-сталлические вещества, хорошо растворимые в воде	Сильные электролиты, обладают всеми свойствами солей; при нагревании разлагаются: $\begin{gathered} \mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{NH}_{3} \uparrow+\mathrm{HCl} \uparrow, \\ \mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \uparrow, \\ \mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \uparrow ; \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2} \uparrow+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O} \uparrow, \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{NH}_{3} \uparrow+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow, \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{H}_{2} \mathrm{~S} \uparrow+2 \mathrm{NH}_{3} \uparrow \end{gathered}$	Взаимодействие аммиака с соответствующими кислотами: $\begin{gathered} \mathrm{NH}_{3}+\mathrm{HCl} \\ \mathrm{NH}_{4} \mathrm{Cl}, \end{gathered}$ $\begin{gathered} \mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \\ \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \end{gathered}$ и др.

Высокая растворимость NH_{3} в воде обусловлена образованием водородных связей между молекулами аммиака и воды:

$$
\mathrm{H}_{3} \ddot{\mathrm{~N}}+\mathrm{H}-\underset{\mathrm{H}}{\mathrm{O}}: \rightarrow \underset{\mathrm{H}}{\mathrm{H}_{3} \stackrel{\mathrm{~N}}{ } \cdots \mathrm{H}-\underset{\mathrm{O}}{\ddot{\mathrm{O}}:}}
$$

Часть аммиака находится в виде молекул NH_{3}, соединенных водородной связью с молекулами воды:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

И хотя равновесие этой обратимой реакции сдвинуто влево, традиционно раствор аммиака в воде обозначают формулой $\mathrm{NH}_{4} \mathrm{OH}$ (гидроксид аммония). Однако правильнее было бы изображать аммиачную воду формулой $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (гидрат). Раствор аммиака в воде имеет слабощелочную реакцию, что объясняется диссоциацией $\mathrm{NH}_{4} \mathrm{OH}$ как слабого основания.

21.4. R

таблица 94
Основные свойства и получение оксидов азота

Фиаические свойства	Хинические сөойстөа	Способы палучения
$\mathrm{N}_{3}^{+1} \mathrm{O} \text { - окснд азота (I), веселищий газ }$		
Бесцветныи ra3, co сладковатым 3anaxom $\begin{gathered} T_{\text {van }}= \\ =-89,5^{\circ} \mathrm{C} ; \\ =-102,4^{\circ} \mathrm{C} \end{gathered}$	Несолеобразупомипи оксид $\begin{aligned} & 2 \mathrm{~N}_{2} \mathrm{O} \xrightarrow[\rightarrow]{\rightarrow 5 \mathrm{~N}_{2}+\mathrm{O}_{2},} \\ & \mathrm{~N}_{2} \mathrm{O}+\underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{H}_{2}} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{N}_{2}+ \end{aligned}$	$\mathrm{NH}_{2} \mathrm{NO}_{3} \xrightarrow{>500^{\circ} \mathrm{C}} \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
$\stackrel{+8}{\mathrm{NO}} \text { - оксид азота (II) }$		
Бесцветныу газ $\begin{gathered} T_{\mathrm{man}}= \\ =-151,6^{\circ} \mathrm{C}, \\ =-163,6^{\circ} \mathrm{C} \end{gathered}$	Несолеобразующий оксид $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ (при обычных условиях). $\begin{gathered} 2 \mathrm{NO}+\underset{+2 \mathrm{SO}_{2} \rightarrow 2 \mathrm{SO}_{3}+}{+\mathrm{N}_{2},} \\ \mathrm{NO}+\mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{3} \end{gathered}$	В промытленности: $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow[+6 \mathrm{H}_{2} \mathrm{O} .]{\sim 60{ }^{\circ} \mathrm{C}} 4 \mathrm{NO}+$ В лаборатории: a) $3 \mathrm{Cu}+8 \mathrm{HNO}_{3}(\mathrm{p}) \rightarrow 2 \mathrm{NO}+$ $+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$; $\xrightarrow[\rightarrow \mathrm{FeCl}_{3}]{\text { 6) }} \mathrm{NaNO}_{2}+\mathrm{FeCl}_{2}+2 \mathrm{NOCl}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{N}_{\mathbf{3}}^{+8} \mathrm{O}_{\mathbf{3}}-$ оксид азота (III), азотистый апгидрид		
Темно-синяя жидкость $T_{\mathrm{sma}}=4^{\circ} \mathrm{C}$	Кислотный оксид, проявляет все свойства кислотных окскдов $\mathrm{N}_{2} \mathrm{O}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{NO}+\mathrm{NO}_{2}$ (при комнатной температуре)	$\begin{gathered} \mathrm{NO}_{2}+\mathrm{NO} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}, \\ \mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{(\varphi)} \rightarrow \mathrm{NaHSO}_{4}+ \\ +\mathrm{HNO}_{2} \\ 2 \mathrm{HNO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$

Физические свойства	Химические свойства	Способы получения
$\stackrel{+4}{\mathrm{NO}_{2}}$ - оксид взота (IV), диоксид азота, "бурый газ"		
Газ бурого цвета с резким удушливым запахом, ядовит, тяжелее воздуха	$\begin{gathered} \begin{array}{c} 2 \mathrm{NO}_{2} \rightleftarrows \mathrm{~N}_{2} \mathrm{O}_{4} \\ \text { (димеризация), } \\ +140^{\circ} \mathrm{C} \\ -11,2^{\circ} \mathrm{C} \end{array} \\ \begin{array}{c} 2 \mathrm{NO}_{2} \xrightarrow[2]{ } \rightarrow 500^{\circ} \mathrm{C} \\ \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}, \end{array} \end{gathered}$ $\begin{gathered} 4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+ \\ +\mathrm{O}_{2}=4 \mathrm{HNO}_{3} \\ \left(\text { пзбыток } \mathrm{O}_{2}\right) \end{gathered}$ $\begin{gathered} 2 \mathrm{NO}_{2}+2 \mathrm{KOH}_{+} \rightarrow \mathrm{KNO}_{3}+\mathrm{HNO}_{2} \mathrm{O}, \end{gathered}$ $\begin{gathered} \quad 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2} \end{gathered}$ $3 \mathrm{NO}_{2}+\underset{+\mathrm{NO}}{\mathrm{H}_{2} \mathrm{O}} \underset{+}{ } 2 \mathrm{HNO}_{3}+$ (в горячей воде)	В промышленности: $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} .$ В лаборатории: a) $\mathrm{Cu}+4 \mathrm{HNO}_{3}$ (к) \rightarrow $\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ;$ б) $\begin{aligned} 2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \\ +4 \mathrm{NO}_{2}+\mathrm{O}_{2} ;\end{aligned}$ $\begin{gathered} \text { в) } 2 \mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{NO}_{2}+ \\ +\mathrm{H}_{2} \mathrm{O} \end{gathered}$
$+6$ $\mathrm{N}_{2} \mathrm{O}_{5}$ - оксид азота (V), азотный ангидрид		
Твердое вещество (белые кристаллы), неустойчивое и летучее (при комнатной температуре разлагается на NO_{2} и O_{2})	Кислотный оксид: $\begin{gathered} \mathrm{N}_{2} \mathrm{O}_{6}+\mathrm{CaO} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, \\ \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}, \\ \\ \mathrm{~N}_{2} \mathrm{O}_{5}+2 \mathrm{NaOH}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ \rightarrow 2 \\ \\ \begin{array}{c} 2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2} \uparrow+\mathrm{O}_{2} \uparrow, \\ \text { (при комнатной } \\ \text { температуре) } \end{array} \\ \hline \end{gathered}$	$2 \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2},$ $\begin{aligned} 2 \mathrm{HNO}_{3} & +\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{HPO}_{3}+ \\ + & \mathrm{N}_{2} \mathrm{O}_{5} \end{aligned}$

Основные свойства и долученне азотной кислоты

Физические свойства Жидкость, дымящая на воздухе, $\rho=1520 \mathrm{kr} / \mathrm{m}^{3}, \mathrm{~T}_{\text {кип }}=86^{\circ} \mathrm{C}$, с водой смешивается в любых соотношениях; при $\mathrm{T}=-42^{\circ} \mathrm{C} \mathrm{HNO}_{3}$ превращается в прозрачную кристаллическую массу
Сильная кислота (в водном растворе $\mathrm{HNO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$), $4 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (на свету под действием теплоты). $\begin{gathered} 4 \mathrm{HNO}_{3}(\kappa)+\mathrm{Cu} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\ 8 \mathrm{HNO}_{3}(\mathrm{p})+3 \mathrm{Cu} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}, \\ 10 \mathrm{HNO}_{3}(\mathrm{p})+4 \mathrm{Ca} \rightarrow 4 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+3 \mathrm{H}_{2} \mathrm{O}, \\ 36 \mathrm{HNO}_{3}(\mathrm{p})+10 \mathrm{Fe} \rightarrow 10 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{~N}_{2}+18 \mathrm{H}_{2} \mathrm{O}, \\ 4 \mathrm{HNO}_{3}(\kappa)+\mathrm{C} \rightarrow \mathrm{CO}_{2}+4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\ \underbrace{\mathrm{HNO}_{3}(\kappa)+3 \mathrm{HCl}}_{\text {«царская водка» }}+\mathrm{Au} \rightarrow \mathrm{AuCl}_{3}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}, \\ 8 \mathrm{HNO}_{3}(\mathrm{p})+3 \mathrm{PbS} \rightarrow 3 \mathrm{PbSO}_{4}+8 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O} \end{gathered}$
Способь получения
В промышленности (аммиачный способ): $\begin{gathered} \mathrm{NH}_{3} \xrightarrow[\mathrm{t}, \mathrm{Pt}]{\mathrm{O}_{2}} \mathrm{NO} \xrightarrow{\mathrm{O}_{2}} \mathrm{NO}_{2} \xrightarrow{+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}} \mathrm{HNO}_{3} ; \\ 4 \mathrm{NO}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3} \end{gathered}$
В лаборатории: $2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\mathrm{t}^{\bullet}} 2 \mathrm{HNO}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}-$ разложение нитратов концентрированной серной кислотой при слабом нагревании. Полученная HNO_{3} перегоняется в колбу, охлажденную водой со снегом или льдом

Характерные свойства азотных удобрений

Удобрение	Нсточники и способы промьышленного получения	Coдер. жание азота. \%	Реакция почвенного pacmeopa
अидкий амлниак $\mathrm{NH}_{8} \cdot \mathrm{nH}_{8} \mathrm{O}$	Химическая фиксашия азота: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3}$	82,4	Щелочная, $\mathrm{pH} \leq 11,5$
$\begin{gathered} \text { Аммиачная } \\ \text { вода } \\ \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O} \end{gathered}$	Побочный продукт при коксовании каменного угля	20-22	Щелочная, $\mathrm{pH} \leq 11,5$
Хлорид аммония $\mathrm{NH}_{4} \mathrm{Cl}$	Побочный продукт в производстве соды: $\begin{gathered} \mathrm{NH}_{3}+\mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaHCO}_{3} \end{gathered}$	25	Слабокислая, $\mathrm{pH} \geq 5,0$
Сульфат аммония $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{SO}_{4}$	Продукт нейтрализации аммиачной воды кислотой $\mathrm{H}_{2} \mathrm{SO}_{4}$	21	Слабокислая, $\mathrm{pH} \geq 5,0$
Мочевина, карбамид $\left(\mathrm{NH}_{2}\right)_{8} \mathrm{CO}$	$\begin{gathered} 2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \xrightarrow{\mathrm{i}^{\circ}, \mathrm{p}} \\ \left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	46,5	Нейтральная, $\mathrm{pH}=7$
Амниачная селитра $\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}$	35	Слабокислая, $\mathrm{pH} \geq 5$
Натриеная (чилийская) селитра NaNO_{3}	$\underset{\rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}}{\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3}}$	16	Нейтральная, $\mathrm{pH}=7$
Humpam кальция, кальциевая селитра $\mathrm{Ca}\left(\mathrm{NO}_{8}\right)_{8}$	$\xrightarrow[\rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}_{3}+\mathrm{CO}_{2}]{ }$	$\begin{aligned} & 15- \\ & 15,5 \end{aligned}$	Нейтральная, $\mathrm{pH}=7$

Мировое производство азотных удобрений (в пересчете на азот) составляет $\sim 53,8$ млн тонн ежегодно.

Применение азотных удобрений эффективно на разных почвах под различные сельскохозяйственные культуры, особенно в нечерноземной зоне России и в районах орошаемого земледелия.

Применение азота и его соединений

Область применения	Цели
В химической промышленности	Синтез аммиака $\mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow[\text { кат. }]{\mathfrak{t}^{\circ}, \mathrm{p}} 2 \mathrm{NH}_{3}$, производство азотной кислоты
В электротехнической промышленности	Создание инертной среды при заполнении азотом электрических ламп
В химикотермической обработке металлов	Азотирование поверхности стальных изделий путем насыщения азотом при высокой температуре
В сельском хозяйстве	Азотсодержащие соединения $\left(\mathrm{NaNO}_{3}, \mathrm{KNO}_{3}\right.$, $\left.\mathrm{NH}_{4} \mathrm{NO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ в качестве удобрений
В военном деле и в геологоразведочных работах	KNO_{3} - составная часть пороха $\left(\mathrm{KNO}_{3}+\mathrm{S}+\right.$ + C); $\mathrm{NH}_{4} \mathrm{NO}_{3}$ - составная часть взрыгвчатого вещества аммонала $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{C}+\mathrm{Al}\right)$
В медицине	Аминокислоты, белки, нитроглицерин и др.

При действии электрических разрядов, а также при разложении нитридов бора (BN), титана (TiN), магния $\left(\mathrm{Mg}_{3} \mathrm{~N}_{2}\right.$) и кальция ($\mathrm{Ca}_{3} \mathrm{~N}_{2}$) образуется активный (атомарный) азот, который при нагревании энергично взаимодействует с водородом, парами серы и фосфора и некоторыми металлами.

Различают азот как химический элемент $\mathbf{N} \mathbf{c}$ порядковым номером 7; молекулярный азот N_{2} как простое газообразное вещество; белковый азот, содержащийся в белках; нитратный азот, входящий в состав соединений в виде нитрогруппы; связанный азот, входящий в любое химическое соединение (исключая молекулярный азот); и усваиваемый азот, находящийся в форме, усваиваемой растениями.

Общее содержание азота в земной коре в виде его соединений составляет $\mathbf{0 , 0 1 \%}$.

21.5. \$0С¢0Р - IPOCTOE BEMECTBO

таблица 98
Основные свойства, получение

Arrompoпические формь	Физические свойства	Химические свойства	Способы получения
Бельй фосфор	Бесцветное ядовнтое вещество, $\rho=820 \mathrm{kr} / \mathrm{m}^{3}$, $T_{\text {пл }}=44,2^{\circ} \mathrm{C}$, нерастворимое в $\mathrm{H}_{2} \mathrm{O}$; окисляется на воздухе, светится в темноте		$\begin{gathered} \hline \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+5 \mathrm{C}+ \\ 3 \mathrm{SiO}_{2} \xrightarrow{\mathrm{t}^{\circ}} \\ 3 \mathrm{CaSiO}_{3}+5 \mathrm{CO} \uparrow \\ +2 \mathrm{P} \\ \\ \text { (синтез идет } \\ \text { в электропе- } \\ \text { чах; пары } \mathrm{P} \\ \text { улавливаптт } \\ \text { в спепрриемни- } \\ \text { ке с водой) } \\ \hline \end{gathered}$
Красный фосфор	Порошок красно- бурого щвета, неядовит, нерастворим в $\mathrm{H}_{2} \mathrm{O}$ и CS_{2}; $p=2200 \mathrm{kг} / \mathrm{m}^{3}$. Возгоняется при сильном нагревании и, охлаждаясь, превращается в белый фосфор	(недостаток O_{2}),	При длительном нагревании белого фосфора без достуга воздуха при $286-300^{\circ} \mathrm{C}$: $\mathbf{P}_{\text {белый }} \xrightarrow{\mathrm{t}^{\circ}} \mathbf{P}_{\text {кррствыии }}$
Черный фосфор	Похож на графит, $T_{\text {пл }}$. $=100^{\circ} \mathrm{C}$ (при $\left.p=1,8 \cdot 10^{9} \Pi a\right)$, нерастворим в воде, обладает свойствами полупроводника	$\begin{gathered} 2 \mathrm{P}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{t}^{\circ}} \underset{\text { ффффин }}{2 \mathrm{PH}_{3},} \\ 2 \mathrm{P}+3 \mathrm{~S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{P}_{2} \mathrm{~S}_{3}, \\ 2 \mathrm{P}+5 \mathrm{~S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{P}_{2} \mathrm{~S}_{5}, \\ 3 \mathrm{P}+5 \mathrm{HNO}_{3}+ \\ 2 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{3} \mathrm{PO}_{4}+ \\ +5 \mathrm{NO} \end{gathered}$	При длительном нагревании белого фосфора (200-220 ${ }^{\circ} \mathrm{C}$, 1200 МПа) получают черный фосфор $\mathbf{P}_{\text {белый }} \xrightarrow{\mathbf{t}^{\circ}} \mathbf{P}_{\text {черяын }}$

Различают также желтый фосфор. Это торговое название товарного продукта - белого фосфора, содержащего примеси.

21.6. СОЕДННЕННЯ ФОСФ0РА

Освовные свойства, получение

Физические свойства	Химические свойства	Способы получения
$\mathbf{P H}_{3}^{\mathrm{z}^{\prime}}$ - фосфин		
Ядовитый газ с чесночным запахом, $T_{\text {пл }}=-133,8^{\circ} \mathrm{C}$ малорастворим в $\mathrm{H}_{2} \mathrm{O}$	PH_{3} - сильный восстановитель, самовоспламеняется на воздухе: $\begin{gathered} 2 \mathrm{PH}_{3}+4 \mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} ; \\ 2 \mathrm{PH}_{3} \xrightarrow{\mathfrak{t}} 2 \mathrm{P}_{+}+3 \mathrm{H}_{2}, \\ \mathrm{PH}_{3}+\mathrm{HI} \underset{\text { иодид фосфонвя }}{\mathrm{PH}_{4} \mathrm{I}} \end{gathered}$	$\begin{gathered} 2 \mathrm{P}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{t}^{\circ}=300^{\circ} \mathrm{C}} \rightarrow 2 \mathrm{PH}_{3}, \\ \mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 3 \mathrm{Ca}\left(\mathrm{OH}_{2}+2 \mathrm{PH}_{3} \uparrow,\right. \\ \mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{HCl} \rightarrow \\ \rightarrow 3 \mathrm{CaCl}_{2}+2 \mathrm{PH}_{3} \uparrow \end{gathered}$
$\mathrm{P}_{2} \mathrm{O}_{3}$ - оксид фосфора (III), фосфористый ангндрид		
$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{3} \Rightarrow \\ \Rightarrow \mathrm{P}_{4} \mathrm{O}_{6}-\text { вос- } \\ \text { кообразная } \\ \text { кристалличе- } \\ \text { ская масса } \\ T_{\text {гл }}=22,5^{\circ} \mathrm{C}, \\ \text { ядовит } \end{gathered}$	Сильный восстановитель: $\mathrm{P}_{2} \mathrm{O}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{6}$. Пролвляет все свойства кислотных оксидов (ангидридов)	$4 \mathrm{P}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{3}$ (горение фосфора при недостатке кислорода)
$\mathbf{P}_{2}^{+3} \mathrm{O}_{\mathrm{B}}$ - оксид фосфора (V), фосфорный апгидрид		
$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5} \Rightarrow \mathrm{P}_{4} \mathrm{O}_{10} \\ \text { гигроский } \\ \text { ний поропит- } \end{gathered}$	$\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HPO}_{3}$ (на холоде), $\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$ (при нагревании). Проявляет все свойства кислотных окспдов (антидридов): $\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{CaO} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \\ \mathrm{P}_{2} \mathrm{O}_{5}+6 \mathrm{NaOH} \rightarrow \underset{2}{ } \mathrm{Na}_{3} \mathrm{PO}_{4}+ \\ +3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$ (горение фосфора в избытке кислорода или сухого воздуха)
HPO_{3} - метафосфорная кислота: $\left[\mathrm{H}_{3}\left(\mathrm{PO}_{3}\right)_{3}\right]$ - триметафосфорная кислота		
-	$\mathrm{HPO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$ (при нагревании), $\underset{\rightarrow \mathrm{H}_{2} \mathrm{O}}{\mathrm{HPO}_{3}+\mathrm{NaOH}} \rightarrow$ метафосфат патрия Проявляет все свойства кислот	$\mathrm{P}_{2} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ $2 \mathrm{HPO}_{3}$ (на холоде), $\begin{gathered} 3 \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 4 \mathrm{H}_{3}\left(\mathrm{PO}_{3}\right)_{3} \end{gathered}$

(ризиеские свойства	Химические свойства	Способь получения
$\mathrm{H}_{3} \mathrm{PO}_{4}$ - ортофосфорная кислота		
Бесцветные прозрачные кристал- $\begin{aligned} & \text { лы, } \\ & T_{\mathrm{um}} \\ &= 42^{\circ} \mathrm{C} \end{aligned}$ неле- туча, хорошо растворима в воде	Кислота средней силы, в водном растворе диссоциирует в три стушени: $\begin{gathered} \mathrm{H}_{3} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\ \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} \\ \mathrm{HPO}_{4}^{2-} \rightleftarrows \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-} \end{gathered}$ Проявляет все свойства кислот: $\begin{gathered} 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{BaO} \rightarrow \\ \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4} \downarrow+3 \mathrm{H}_{2} \mathrm{O},\right. \\ 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \\ \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4} \downarrow+6 \mathrm{H}_{2} \mathrm{O},\right. \\ 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Zn} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow+ \\ +3 \mathrm{H}_{2} \uparrow, \\ \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{CH}_{3} \mathrm{COOAg}_{3} \rightarrow \\ \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4} \downarrow+3 \mathrm{CH}_{3} \mathrm{COOH} \\ \hline \end{gathered}$	В промышленности: 1) экстракционный способ: $\begin{aligned} & \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)+3 \mathrm{H}_{2} \mathrm{SO}_{4}+ \\ & +2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}+ \\ & \quad+3 \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} ; \end{aligned}$ 2) термический способ: $\begin{aligned} 2 \mathrm{P}+5 \mathrm{O}_{2} & \rightarrow \mathrm{P}_{2} \mathrm{O}_{5} \\ \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4} . \end{aligned}$ В лаборатории: $\begin{gathered} 3 \mathrm{P}+5 \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow 3 \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{NO}^{-} \uparrow \end{gathered}$
$\mathrm{H}_{4} \mathrm{P}_{8} \mathrm{O}_{7}$ - пирофосфорная (дифосфорная) кислота		
Кристаллы, хоропо растворимые в воде	Проявляет все свойства кислот	$\xrightarrow[\rightarrow]{2 \mathrm{H}_{3} \mathrm{PO}_{4}} \xrightarrow[\mathrm{H}_{4}]{26 \mathrm{P}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}}$
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$ - дигидрофосфат натрия, $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ - гидрофосфат натрия, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ - фосфат натрия, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}, \mathrm{CaHPO}_{4}, \mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right)_{2}$		
-	Проявляют все свойства солей. Фосфаты щелочньх металлов и ($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ хорошо растворимы в воде. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ хорошо растворим, CaHPO_{4} малорастворим, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ нерастворим. $\begin{gathered} \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NaOH}+ \\ +\mathrm{Na}_{2} \mathrm{HPO}_{4} \\ \mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{-} \\ (\mathrm{pH}>7, \text { среда щелочная }) \end{gathered}$	$\begin{gathered} \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \\ \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}, \\ 2 \mathrm{NaOH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{HPO} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \\ 3 \mathrm{NaOH}_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \\ \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}, \\ \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NH}_{3} \rightarrow \\ \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \\ \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \\ \rightarrow 2 \mathrm{CaSO}_{4}+{\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}}^{2} \end{gathered}$

таолица 100
Характеристнка векоторых фосфорных удобрений

Удобрение	Источники и способы прамышилен. ного палучения	Содерхание $P_{9} O_{6}$ \%	Pacmeo. римоств в воде, npuмеси
Фосфорнав и апатитная мука $C a_{s}(P O)_{s}$	Измельчение фосфоритов и апатитов	16-35	Плохо раствоpiM, фтор
Простой суперфосфаm $\mathrm{Ca}\left(\mathrm{H}_{3} \mathrm{PO}\right)_{2}+$ $2 \mathrm{CaSO}_{4} \mathrm{H}_{8} \mathrm{O}$	$\underset{\rightarrow \mathrm{Ca}\left(\mathrm{H}_{2}\right)_{3} \mathrm{PO}_{4}+2 \mathrm{H}_{2}+2 \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{O}}{\mathrm{H}_{2} \mathrm{O}}$	14-20	Раствоprim, фтор, гипс
Двойной суперфос. कаm $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO} \mathrm{J}_{2}\right.$	$\begin{gathered} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+4 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \\ \rightarrow 3 \mathrm{Ca}_{a}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \\ \hline \end{gathered}$	До 35	Растворим
Обесфтореннхй фосфат, термофос- 	Удаление HF из апатитов, фосфоритов водянытм паром: $\mathrm{CaF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HF}$	20-32	Плохо раствоPKM, $\mathrm{Ca}(\mathrm{OH})_{2}$
Преципитат $\mathrm{CaHPO}, 2 \mathrm{H}_{8} \mathrm{O}$	$\xrightarrow[\rightarrow]{\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{CaH}(\mathrm{CaH})_{2} \rightarrow}$	27-35	Раствоphim
Ausoорос $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ (основа + принеси)*	$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$	$\begin{gathered} 35-50 \% \\ \mathrm{P}_{2} \mathrm{O}_{6} \mathrm{KI}_{1} \\ 9-12 \% \mathrm{~N}_{2} \\ \hline \end{gathered}$	Раствоpй
$\begin{gathered} \text { Hитрофоска } \\ \left(\mathrm{NH}_{\nu_{P}} \mathrm{HPO}\right. \\ \hline \end{gathered}$	Смешивание $\mathrm{HNO}_{3}, \mathrm{KCl}$ и фосфатного сырья	$\begin{gathered} 10 \% \mathrm{P}_{2} \mathrm{O}_{5}, \\ 11 \% \mathrm{~K}_{2} \mathrm{O} \\ 11 \% \mathrm{~N}_{2} \\ \hline \end{gathered}$	
Hитрофосфат $\mathrm{CaHPO}, \mathrm{Ca}\left(\mathrm{NO}_{4}\right)_{8}$	Разложение фосфатного сырья азотной кислотой HNO_{3}	$\begin{gathered} 14-27 \% \\ \mathrm{P}_{2} \mathrm{O}_{6} \mathrm{H} \\ 9-12 \% \mathrm{~N}_{2} \end{gathered}$	РаствоPaM_{4}

* C примесью $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{HPO}_{4}$ пп пебольших количеств $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$ и CaHPO_{4}.

таблича 101
Применение фосфора и его соедннений

Вещества	Область применения
Белый фосфор	Получение красного фосфора, зажигательных и дымообразуюоцих веществ, в металлургии
Краснын фосфор	$\begin{gathered} \text { В производстве сппчек: } \\ \mathrm{P}+\mathrm{KCO}_{3}+\mathrm{S}+\mathrm{MnO}_{2}+\mathrm{Fe}_{2} \mathrm{O}_{3} \end{gathered}$
$\mathrm{P}_{2} \mathrm{O}_{5}$	Получение фосфорной кислоты
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Получение фосфорных солей и удо6рений
$\begin{gathered} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} ; \\ \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{1}\right)_{2}+2 \mathrm{CaSaS}_{4} \mathrm{H}_{2} \mathrm{O} \\ \mathrm{CaHPO} \\ \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4} \mathrm{PP}_{4} \\ \hline \end{gathered}$	Используются в качестве фосфорных удобрении в сельском хозяйстве

21.7. БНОЛОГНЧЕСКАЯ РОЛЬ АЗОТА И ФОСФОРА

Азот играет исключительно важную роль в жизни растений, поскольку он входит в состав аминокислот, белков, хлорофилла, витаминов группы B , ферментов, активизирующих обмен веществ. Поэтому недостаток азота в почве отрицательно сказывается на растениях, и в первую очередь на содержании хлорофилла в листьях, из-за чего они бледнеют и приобретают светло-зеленый цвет («азотное голодание»). Овощные растения потребляют от 50 до 250 кг азота на 1 гектар площади почвы. Вольше всего азота находится в цветах, молодых листьях и плодах. Важнейшим источником азота для растений являются азотные удобрения - это в основном $\mathrm{NH}_{4} \mathrm{NO}_{3}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ и др. (см. табл. 96). Следует отметить также особую роль азота как составной части воздуха - важнейшего компонента живой природы.

Ни один из химических элементов не принимает столь активного и многообразного участия в жизненных процесcax растительных и животных организмов, как фосфор. Он входит в состав нуклеиновых кислот, входит в состав некоторых ферментов и витаминов, содержится в фитине.

У животных и человека в костях сосредоточено до 90% фосфора, в мышцах - до 10%, в нервной ткани около 1% (в виде неорганических и органических соединений). В мышцах, печени, мозге и других органах фосфор находится в видефосфатидов и фосфорных эфиров. Фосфор принимает участие в мышечных сокращениях и в построении мышечной и костной ткани.

Академик А. Е. Ферсман назвал фосфор «элементом жизни и мысли». Людям, занимающимся умственным трудом, необходимо потреблять повышенное количество фосфора, чтобы не допустить истощения нервных клеток, которые функционируют с повышенной нагрузкой именно при умственном труде. При недостатке фосфора понижается работоспособность, развивается невроз, нарушается обмен веществ. Недостаток фосфора в организме может быть пополнен употреблением таких овощей и фруктов, как салат, шпинат, щавель, фасоль, морковь, томаты, баклажаны, огурцы, сладкий перец, клубника, абрикосы. Из продуктов животного происхождения наиболее богаты фосфором мясо, мозг, говяжья печень, рыба, яйца, молокопродукты.

22. ЭЛЕМЕНТЫ ІРУПIIЫ IVA (р-ЭЛЕМЕНTЫ)

22.1. ОБПAЯ XAPAKTEPMCTHKA ОЛEMEHTOB

таблица 102
Основные сведения об элементах

Символ элемента	C	Si	Ge	Sn	Pb
Латинское на. звание	Carboneum	Silicium	Germanium	Stannum	Plumbum
Русское название	Углерод	Кремний	Германий	Олово	Свинец
Год omкрытия	Известен с древних времен	1825	1886	Изве стен с древних времен	Известен с древних времен
Asmop открытия	-	Й. Берцелиус	К. А. Винклер	-	-
Содержание в земной коре, массовая даля, \%	0,35	27,6	$7 \cdot 10^{-4}$	$4 \cdot 10^{-3}$	$1,6 \cdot 10^{-3}$
Основньие природные соеди. нения	В свободном состоянии алмаз, графит; в связанном уголь, нефть. CaCO_{3} (известняк), $\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$ (малахит), MgCO_{3} (магнезит)	$\begin{gathered} \begin{array}{c} \mathrm{SiO}_{2} \\ \text { (кремне- } \\ \text { зем), } \end{array} \\ \text { минералы } \\ \left.\mathrm{M}_{2} \mathrm{AlSi}_{3} \mathrm{O}_{\mathbf{3}}\right] \\ \text { где } \mathrm{M}= \\ \mathrm{Na}, \\ \mathrm{~K}, \mathrm{Ba} \end{gathered}$	$\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ (аргиродит), $\mathrm{Cu}_{3}(\mathrm{Fe}$, $\mathrm{Ge} \mathrm{S}_{4}$ (германит)	SnO_{2} (касситерит), $\mathrm{Cu}_{2} \mathrm{FeSnS}_{4}$ (станнин)	PbS (галенит), PbSO_{4} (англе- зит), PbCO_{3} (церуссит)

Электронные конфигурации атомов в основном состоянии:

$$
\begin{aligned}
& { }_{6} \mathrm{C}-1 s^{2} 2 s^{2} 2 p^{2} \\
& { }_{14} \mathrm{Si}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2} \\
& { }_{32} \mathrm{Ge}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{2} \\
& { }_{20} \mathrm{Sn}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2} \\
& { }_{82} \mathrm{~Pb}-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} 6 p^{2}
\end{aligned}
$$

Атомные характеристики

Элемент	C	Si	$G e$	Sn	$P b$
Атамный (noрядковьй) номер	6	14	32	50	82
Относительная атамная масса	12,011	28,086	72,610	118,710	207,200
Электронная структура внешнего энергетического уровня	, где n (номер периода) $=2,3,4,5,6$				
Первый потенциал иониза4ии, зв	11,26	8,15	7,90	7,34	7,42
Cpodcmeo к электрону, эВ	1,27	1,36	1,74	1,03	1,03
Электроотрицательность	2,50	1,74	2,02	1,72	1,55
Степени окисления	-4, $+2,4$	$-4,+2,+4$	+2,+4	+2,+4	+2,+4

Углерод и кремний являются типичными неметаллами, германий проявллет свойства металла и неметалла, а олово и свинец - это типичные металлы.

Как видно из табл. 103, все эти элементы являются p-әлементами. Атомы этих элементов в основном состоянии двухвалентны, а их максимальная валентность равна четырем (при возбужденном состоянии).

22.2. УTJIEPOД
 KAK IPOCTOE BEMECTBO

таблица 104
Основные свойства, применение

Физические свойства

Апмаз - бесцветное, прозрачное, очень твердое вещество, плохо проводит теплоту и не проводит электрический ток.

Графит - темно-серое непрозрачное вещество с металлическим блеском, проводит электрический ток и теплоту.

Аморфный углерод (древесный уголь, сажа) - продукт неполного сгорания органических веществ.
Карбин - вещество, состоящее из полимерных молекул (- $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}-)_{n}$

Химические свойства

Взаимодействие с неметаллами (восстановительные свойства):

$$
\begin{aligned}
& \mathrm{C}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CO}_{2}+393 \text { кДж (избытток } \mathrm{O}_{2} \text {), } \\
& 2 \mathrm{C}+\mathrm{O}_{2} \xrightarrow{\mathfrak{t}^{\circ}} 2 \mathrm{CO}-174 \text { кДж (недостаток } \mathrm{O}_{2} \text {); } \\
& \mathrm{C}+2 \mathrm{~F}_{2} \rightarrow \mathrm{CF}_{4}, \mathrm{C}+2 \mathrm{~S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CS}_{2} \text { (сероуглерод), } \quad 2 \mathrm{C}+\mathrm{H}_{2} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{C}_{2} \mathrm{H}_{2} \text { (аце- } \\
& \mathrm{C}+2 \mathrm{H}_{2} \xrightarrow[\text { кат. }]{\mathrm{t}^{\circ}} \mathrm{CH}_{4} \text { (метан). } \\
& \text { Взаимодействие с металлами (окислительные свойства): }
\end{aligned}
$$

$$
\begin{gathered}
2 \mathrm{C}+\mathrm{Ca} \xrightarrow{\mathrm{t}_{\circ}^{\circ}} \mathrm{CaC}_{2} \text { (карбид кальция), } 3 \mathrm{C}+4 \mathrm{Al}_{\text {алюминия) }}^{\stackrel{t^{\circ}}{\rightarrow}} \mathrm{Al}_{4} \mathrm{C}_{3} \text { (карбид } \\
\mathrm{C}+\mathrm{W} \xrightarrow[\rightarrow]{\mathrm{t}^{\circ}} \mathrm{WC} \text { (карбид вольфрама) } .
\end{gathered}
$$

Взаимодействие со сложными веществами:

$$
\begin{gathered}
3 \mathrm{C}+\mathrm{CaO} \xrightarrow{\stackrel{\mathrm{t}^{\circ}}{\rightarrow}} \mathrm{CaC}_{2}+\mathrm{CO}, \mathrm{C}+4 \mathrm{HNO}_{3(k)} \rightarrow \mathrm{CO}_{2}+4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\
3 \mathrm{C}+4 \mathrm{HNO}_{3}(\mathrm{p}) \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}, \\
\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{k}) \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Области применения

Алмаз используется для обработки тверднх материалов, резки стекла, в буровых работах, а также в ювелирном деле.
Графит применяется для изготовления электродов, щеток электромоторов, тиглей для плавки металлов, в производстве карандашей и в составе смазок, работающих при повышенных температурах. Аморфный углерод - в производстве красок, резины, как адсорбент в противогазах и в медицинне.

Карбин интересен как материал для сверхпрочных волокон и кан: полупроводник.

22.3. СОДПННЕНПД УТЛЕРОДА

таблича 105
Основные свойства, получение и применение

Физические свойства	Химические свойства	Способы палучения	Области приженения
СО - оксид углерода (II), техническое название «генераторный газ»,угарный газ			
Газ без цвета и запаха, легче воздуха, мало растворим в воде, растворим в спирте, бензоле; $\begin{aligned} & T_{\mathrm{nj}}= \\ & -205,02^{\circ} \mathrm{C}, \\ & T_{\mathrm{kan}}= \\ & -191,5^{\circ} \mathrm{C} \end{aligned}$	Несолеобразующий оксид. $2 \mathrm{CO}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CO}_{2}$ (горение на воздухе и в кислороде),	В промышленности: в газогенераторах пропусканием воздуха через слой раскаленного угля: $\begin{aligned} & \mathrm{C}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CO}_{2}, \\ & \mathrm{CO}_{2}+\mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CO} \end{aligned}$ В лаборатории: $\mathrm{HCOOH} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{H}_{2} \mathrm{O}+$ муравьнная $\underset{\text { кислота }}{+\mathrm{CO}}$ (в присутствии конщетрированниой $\mathrm{H}_{2} \mathrm{SO}_{4}$, которан отнимает воду)	$\mathrm{CO}+\mathrm{H}_{2}$ использу- ется как топливо, в метал- лургии, для синтеза $\mathrm{CH}_{3} \mathrm{OH}$, COCl_{2} и др.; для восстанов- ления не- которых оксидов металлов и получе- ния кар- бонилов металлов
CO_{2} - оксид углерода (IV), угольный ангидрид, углекнслый газ			
Газ без цвета и запаха, тяжелее воздуха. При $20^{\circ} \mathrm{C}$ и дав- лениии 5,76•10 ${ }^{6}$ Па превра- щается в бесц- ветную жидкость. Твердый CO_{2} - «су. хой лед"	CO_{2} - кислотный оксид, проявляет все свойства ангидридов: $\begin{gathered} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}, \\ \mathrm{CO}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCO}_{3}+ \\ +\mathrm{H}_{2} \mathrm{O} \\ \mathrm{CO}_{2}+\mathrm{CaO} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaCO}_{3} ; \\ \mathrm{CO}_{2}+2 \mathrm{Mg} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{MgO}+\mathrm{C} \\ \mathrm{CO}_{2}+\mathrm{Zn} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{ZnO}+\mathrm{CO} \end{gathered}$	В промышленности: $\begin{gathered} \mathrm{CaCO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaO}+ \\ +\mathrm{CO}_{2} . \end{gathered}$ В лаборатории: $\begin{gathered} \mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \\ \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+ \\ +\mathrm{CO}_{2} \text { (в аппара. } \\ \text { те Киппа) } \end{gathered}$	В огнетушителях, в пищевой про-мыплленности при изготовлении напитков, в газовых лазерах. Твердый CO_{2} ("сухой лед") -хладоareнт

Продолжение табл. 105

Физические свойства	Химические свойстөа	Способы палучения	Области прменения
$\mathrm{H}_{3} \mathrm{CO}_{3}$ - угольная кислота			
Becцветная жидкость	Непрочное соединение; в водном растворе CO_{2} существует равновесие: $\begin{gathered} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3} \underset{3}{\rightleftarrows} \stackrel{\mathrm{H}^{+}}{\stackrel{+}{+}}+ \\ +\mathrm{HCO}_{3}^{-} \underset{\mathrm{H}^{+}}{ }+\mathrm{CO}_{3}^{2-} . \end{gathered}$ Взаимодействует только с оксидами п гидроксидами щелочннгх и щелочноземельных металлов: $\begin{gathered} \mathrm{BaO}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{BaCO}_{3}+ \\ +\mathrm{H}_{2} \mathrm{O}, \\ 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+ \\ +2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Растворение CO_{2} в воде: $\begin{gathered} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\ \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3} \end{gathered}$	Применяется в виде солей, а также присутствует в газированных напитках
Соли угольной кислоты: $\mathrm{CaCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{3}$ - карбонаты; $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{NaHCO}_{3}$ - гцдрокарбонаты			
Tвер- дые кри- сталлв- ческие веще- ства	$\begin{gathered} \mathrm{CaCO}_{3} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{CaO}+\mathrm{CO}_{2} \uparrow, \\ \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftarrows \\ \rightleftarrows \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \\ \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+ \\ +\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow \\ 2 \mathrm{NaHCO}_{3} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{Na}_{2} \mathrm{CO}_{3}+ \\ +\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow \\ \left(\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{NH}_{3} \uparrow+\right. \\ +\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow \\ \mathrm{NaHCO}_{3}+\mathrm{HCl}_{3} \mathrm{NaCl}+ \\ +\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \end{gathered}$	Взаимодействие CO_{2} со щелочами: $\begin{gathered} 2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \\ \rightarrow \mathrm{CaCO}_{3} \downarrow+ \\ \mathrm{H}_{2} \mathrm{O}, \end{gathered}$ $\begin{aligned} & \mathrm{Ba}\left(\mathrm{OH}_{3}\right)+\mathrm{CO}_{2} \overrightarrow{\rightarrow \mathrm{BaCO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}} \end{aligned}$	CaCO_{3} и MgCO_{3} - в метал- лургии и строи- тельстве, в сельском хозяйстве. $\mathrm{NaHCO}_{3}-$ в меди- цране п шищевой промышы- ленности

22.4. XPEMHITL RAK HPOCTOE BEMECTBO

таблица 106
Основные свойства, получение и прнменение

Физические свойства

Образует две аллотропические формы: кристаллический и аморфный кремний.

Кристаллический кремний имеет серо-стальной џвет и металлический блеск; $\rho=2420 \mathrm{kr} / \mathrm{m}^{3}, T_{\text {пл }}=1420^{\circ} \mathrm{C}, T_{\text {кип }}=2600^{\circ} \mathrm{C}$.

Обладает полупроводниковыми свойствами

Химические свойства

$$
\mathrm{Si}+2 \mathrm{Cl}_{2} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{SiCl}_{4} \text { (тетрахлорид кремния), }
$$

$$
\mathrm{Si}+2 \mathrm{~F}_{2} \rightarrow \mathrm{SiF}_{4}, \mathrm{Si}+2 \mathrm{Br}_{2} \rightarrow \mathrm{SiBr}_{4}, \mathrm{Si}+\mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SiO}_{2}+861 \text { кДж, }
$$

$$
\mathrm{Si}+\mathrm{C} \xrightarrow{\mathbf{t}^{\circ}} \mathrm{SiC} \text { (карбид кремния) }
$$

$$
\mathrm{Si}+2 \mathrm{~S} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SiS}_{2} \text { (сульфид кремния (IV)), }
$$

$$
\mathrm{Si}+2 \mathrm{FeO} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Fe}+\mathrm{SiO}_{2}
$$

$$
\mathrm{Si}+2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~K}_{2} \mathrm{SiO}_{3}+2 \mathrm{H}_{2} \uparrow
$$

Способы палучения
B промытленности: $\mathrm{SiO}_{2}+2 \mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CO}+\mathrm{Si}$.
Волее чистый кремний получают так: $2 \mathrm{Zn}+\mathrm{SiCl}_{4} \rightarrow 2 \mathrm{ZnCl}_{2}+\mathrm{Si}$.
Кремний, полученный по этой реакции, используют как полупроводник.
B лаборатории: $\mathrm{SiO}_{2}+2 \mathrm{Mg} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{MgO}+\mathrm{Si}, \quad \mathrm{SiO}_{2}+2 \mathrm{C} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{CO}+\mathrm{Si}$,

$$
3 \mathrm{SiO}_{2}+4 \mathrm{Al} \xrightarrow{\mathrm{t}^{\circ}} 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Si}
$$

Области применения
В металлургии в качестве добавки к стали для улучшения ее свойств и в производстве сплавов. В электронике полупроводниковый кремний используют для изготовления диодов, транзисторов, высоковольтных тиристоров и др.

$$
\begin{aligned}
& \mathrm{Si}+2 \mathrm{Mg} \xrightarrow{\mathrm{t}^{\circ}} \underset{\text { силғщид }}{\mathrm{Mg}_{2} \mathrm{Si},} \\
& \text { магния }
\end{aligned}
$$

22.5. COEमILIXHEX RPDMHDE

таблича 107
Свойства, получение и применение бескислородвых соөдивевий кремвия

Физические свойстеа	Химические сөойства	Способы палучения	Области применения
SiH_{4} - силан			
Бесцветныи газ с характерным запахом, высокотоксичныи	Химически активнее углеводородов: $\begin{aligned} & \mathrm{SiH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{SiO}_{2}+ \\ &+2 \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Mg}_{2} \mathrm{Si}+4 \mathrm{HCl} \rightarrow \\ \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{SiH}_{4} \uparrow \end{gathered}$	-
SiC - карбид кремния (карборунд)			
Бесцветные кристаллы (чистое вещество). Кристаллы от темносерого до черного цвета (техническии SiC) высокои твердости	$\begin{aligned} \mathrm{SiC} & +2 \mathrm{O}_{2} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SiO}_{2}+ \\ & +\dot{\mathrm{C}} \mathrm{O}_{2} . \end{aligned}$ Устойчив к действию минеральных кислот (кроме концентрированних HF и HNO_{3})	$\begin{gathered} \text { 1. } \mathrm{SiO}_{2}+ \\ +3 \mathrm{C} \xrightarrow{\mathfrak{t}^{\circ}} \mathrm{SiC}+ \\ +2 \mathrm{CO} \uparrow+527 \text { кДж } \\ \text { 2. Пиролиз } \\ \text { кремнийорганиче- } \\ \text { ских ооепинний } \\ \mathrm{CH}_{3} \mathrm{SiCl}_{3}, \\ \mathrm{CH}_{3} \mathrm{SiHCl}_{2} \text { и др. } \end{gathered}$	В абра зивноу промыштленности, в полупроводниковой технике, как компонент огнеупоров
SICl - тетрахлорид кремния (четыреххлористый кремний)			
Весцветная летучая жидкостъ	$\begin{gathered} \mathrm{SiCl}_{4}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \rightarrow \mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow+4 \mathrm{HCl} \end{gathered}$	$\begin{gathered} \mathrm{SiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \\ \rightarrow \mathrm{SiCl}_{4}+2 \mathrm{CO} \uparrow \end{gathered}$	В прожаводстве кремния высокой чистоты

Из бескислородных соединений кремния наиболее важными являются карбид (SiC) и нитрид $\left(\mathrm{Si}_{8} \mathrm{~N}_{4}\right)$ кремния. Эти соединения в последние годы нашли широкое применение при изготовлении на их основе деталей для сельскохозяйственного, нефтяного и химического машиностроения. Кроме того, изделия на основе нитрида кремния (нитридная керамика) применяют в газотурбинных двигателях для изготовления таких деталей, как форкамеры, пальцы толкателя, крыльчатки турбокомпрессора и др.

Основные свойства, получение и применение кислородных соединений кремния

Физические свойства	Химические свойства	Способы палучения	Области применения
SiO - оксид кремния (II), монооксид кремния			
Твердое вещеСтво жентова-T0-коричневого цвета	Несолеобразующий оксид. $\begin{aligned} & \mathrm{SiO}+2 \mathrm{NaOH} \rightarrow \\ & \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{SiO}_{2}+\mathrm{Si} \xrightarrow{\mathfrak{t}^{\circ}} 2 \mathrm{SiO}, \\ & 2 \mathrm{SiO}_{2}+\mathrm{SiC} \xrightarrow{\mathrm{t}^{\circ}} \\ & \xrightarrow{\mathrm{t}^{\circ}} 3 \mathrm{SiO}+\mathrm{CO} \uparrow \end{aligned}$	В металлургии как восстановитель железа из руды
SiO_{8} - оксид кремния (IV), кремнезем, кремниевый ангидрид, диоксид кремния			
Бесцветное твердое вещество, нерас-творимое в воде и кислотах (кроме HF)	Каслотный окспд, обладает всеми свойствами кдслотных оксидов:	$\begin{aligned} & \text { 1. } \mathrm{H}_{2} \mathrm{SiO}_{3} \stackrel{\mathrm{t}^{\circ}}{\rightarrow} \mathrm{H}_{2} \mathrm{O}+ \\ & +\mathrm{SiO}_{2} \\ & \text { 2. Выращивание мо- } \\ & \text { нокрасталлов } \mathrm{SiO}_{2} \\ & \text { из расплава } \mathrm{SiO}_{2} \\ & \text { 3. Разложене } \\ & \text { паров SiCl } \\ & \mathrm{H}_{2} \mathrm{O} \text { прирах } \\ & \mathrm{T}=1100-1400^{\circ} \mathrm{C} \end{aligned}$	В оптике (чистый SiO_{2}); для изготовления химической посуды и деталей в химической промышленности
$\boldsymbol{m} \mathrm{SiO}_{\mathbf{2}} \cdot \boldsymbol{n} \mathrm{H}_{2} \mathrm{O}$ - кремниевые кислоты: $\mathrm{H}_{2} \mathrm{SiO}_{3}$ - метакремниевая, $\mathrm{H}_{4} \mathrm{SiO}_{4}$ - ортокремниевая, $\mathrm{H}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}$ - дикремниевая			
Про- зрачная студе- нистая масса, при высы- хании которой обра- зуется сили. кагель SiO_{2}	$\mathrm{H}_{2} \mathrm{SiO}_{3}$ - слабая (слабее угольной) малоустойчивая двухосновная кислота, нерастворимая в воде, растворяется только в щелочах: $\begin{gathered} \mathrm{H}_{2} \mathrm{SiO}_{3}+2 \mathrm{NaOH} \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+2 \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{H}_{2} \mathrm{SiO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{gathered} \hline \mathrm{Na}_{2} \mathrm{SiO}_{3}+2 \mathrm{HCl} \rightarrow \\ \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow, \\ \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}+ \\ +\mathrm{CO}_{2} \rightarrow \\ \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SiO}_{3} \downarrow \end{gathered}$	В производстве стекла, керамики. Силикагель -поглотитель паров и газов в промыш. ленных аштаратах

$\Phi_{\text {изические }}$ свойства	Химические сөойстөа	Способы палучения	Области применения
Соли кремнневых кислот: $\mathrm{CaO}-\mathrm{SiO}_{2}$ - силикат кальция, $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ - полевой шшат, $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \underset{\mathrm{Na}_{2} \mathrm{SiO}_{3} \text { - силинкат натрия }}{\text { каллин }}$ (глина) $\mathrm{K}_{2} \mathrm{SiO}_{3}$ силикат калия,			
$\begin{aligned} & \hline \text { Твер- } \\ & \text { дые } \\ & \text { кри- } \\ & \text { сталли- } \\ & \text { ческие } \\ & \text { веще- } \\ & \text { ства } \end{aligned}$	Выветривание полевого mппата: В воде растворяются толкко силикаты щелочных металлов.	$\begin{gathered} \mathrm{SiO}_{2}+2 \mathrm{KOH} \xrightarrow{\mathfrak{t}^{\circ}} \\ \xrightarrow{\mathrm{t}^{\circ}} \mathrm{K}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}, \\ \mathrm{SiO}_{2}+\mathrm{CaO} \xrightarrow{\mathrm{t}^{\circ}} \mathrm{CaSiO}_{3}, \\ \mathrm{SiO}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{t}^{\circ}} \\ \xrightarrow{\mathrm{t}^{\circ}} \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{CO}_{2} \uparrow \end{gathered}$	Водные растворы $\mathrm{K}_{2} \mathrm{SiO}_{3}$ и $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ используются для изготовления кислотоупорного цемента п бетона, замазок, в строи- телном деле. Цемент получают прокаливанием смеси глины, известняка и кремнезема, испольуут для изготовления бетона
$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}$ - оконное стекло			
Прозрачное аморфное тело (пере-охлажденная жидкость)	$\underset{\text { сода }}{\mathrm{Na}_{2} \mathrm{CO}_{3}}+\underset{\text { пзвестняк кремнезем }}{\mathrm{CaCO}_{3}}+6 \mathrm{SiO}_{2} \xrightarrow{\mathrm{t}^{\circ}}$ $\left(t^{\circ} \approx 140\right.$ Добавки $\mathrm{CrO}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Ag}$ (в нии), $\mathrm{Ce}_{2} \mathrm{O}_{3}$ придают стекл $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CuO}, \mathrm{Pr}_{2} \mathrm{O}_{3}$ - зелен $\mathrm{Mn}_{2} \mathrm{O}_{3}, \mathrm{Nd}_{2} \mathrm{O}_{3}-$ фиолетову розовую; MnO_{2} - красно-л	$\mathrm{a}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}+2 \mathrm{CO}_{2} \uparrow$ ${ }^{\circ} \mathrm{C}$). оллоидном состояжелтую окраску; ; CoO - синюю; NiO , ; $\mathrm{MnO}, \mathrm{Se}, \mathrm{Er}_{2} \mathrm{O}_{3}-$ ловую	Стекло применяют в строительной индустрии, химии, быту

22.6. БКОЛОГНЧЕСКАЯ РОЛЬ УГЛЕРОДА И КРЕМННЯ

Соединения углерода являются основой растительных и животных организмов (-45% углерода содержится в растениях и $\mathbf{2 6 \%}$ - в животных организмах).

Характерные биологические свойства проявляют оксид углерода (II) и оксид углерода (IV). Оксид углерода (II) CO - очень токсичный газ, так как он прочно соединяется с гемоглобином крови и лишает гемоглобин возможности переносить кислород от легких к капиллярам. При вдыхании СО человек может получить отравление, возможен даже смертельный исход. Оксид углерода (IV) CO_{2} особенно важен для растительных организмов. В клетках растений (особенно в листьях) в присутствии хлорофилла и под действием солнечной энергии происходит фотосинтез глюкозы из углекислого газа и воды с выделением кислорода (см. раздел 1.21 , с. 24).

В результате фотосинтеза растения ежегодно связывают до 150 млрд тонн углерода и 25 млрд тонн водорода и выделяют в атмосферу до 400 млрд т кислорода. Ученые установили, что растения получают около $25 \% \mathrm{CO}_{2}$ через корневую систему из растворенных в почве карбонатов.

Кремний растения используют для построения покровных тканей; содержащийся в растениях кремний, пропитывая клеточные стенки, делает их более твердыми и устойчивыми к повреждениям насекомыми, предохраняет их от проникновения грибной инфекции. Кремний находится почти во всех тканях животных и человека, особенно им богаты поджелудочная железа, печень, волосы, шерсть, кожа, кости, зубы, хрящи. У туберкулезных больных в костях, зубах и хрящах кремния значительно меньше, чем у здоровых людей. При таких заболеваниях, как экзема, чешуйчатый лишай, болезнь Боткина, отмечается уменьшение содержания кремния в крови, а при поражении толстой кишки - наоборот, увеличение его содержания в крови.

23. ХНММЯ
 И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ COBPEMEHHOCTM

Экология - наука об отношении биологических сообществ между собой и с окружающей средой. Промышленная экология - наука о взаимосвязи объектов хозяйственной деятельности человека с окружающей средой.

С развитием химической промышленности, металлургии и других производств в окружающую среду попадают вредные для живой природы вещества, которые нарушают природное экологическое равновесие. Сегодня существует проблема защиты окружающей среды от химического загрязнения, а әто требует ускорения развития промышленной экологии, которое немыслимо без участия в этом химии, играющей дволкую роль в жизни человеческого общества: с одной стороны, отходы химических производств загрязняют природу, а с другой - благодаря знаниям химии удается путем соответствующих химических реакций устранить выделение в окружающую среду вредных для живой природы веществ. В качестве примеров кратко рассмотрим виды и контроль загрязнений воздуха и природных водных ресурсов.

Состав сухого воздуха и основные источники его загрязнений приведены в табл. 109-114.

таблица 109
Состав сухого воздуха

Компонент	Среднее содержание, об. \%
N_{2}	78,09
O_{2}	20,95
Ar	0,93
CO_{2}	0,03
Ne	0,0018
He	0,0005
$\mathrm{CH}_{4}, \mathrm{Kr}, \mathrm{N}_{2} \mathrm{O}_{\mathbf{2}} \mathrm{HH}_{2} \mathrm{Xe}, \mathrm{NO}_{2}, \mathrm{O}_{3}$,	-

* В порядке убывания их содержания в воздухе.

таблица 110
Тицичные соединения-загрязнители городского воздуха

Согдинения	Содержание, \%
Оксид углерода (II) CO	48,5
Оксиды азота NO_{x}	15,0
Оксдды серы $\mathrm{SO}_{\boldsymbol{x}}$	14,9
Твердые частицы	13,7
Углеводороды $\mathrm{C}_{\mathbf{x}} \mathrm{H}_{\mathbf{y}}$	$\mathbf{8 , 0}$

Основные источникн загрязнений воздуха в типичной городской атмосфере (по даиным нацновального управления СІІА по загрязненню воздуха)

Источник загрязнения	Относительная интенсивность, \%
Транспорт	44
Отопление	20
Промышленность	14
Сжигание мусора	5
Прочие	17

таблица112
Источники появления диокснда серы $\mathbf{S O}_{2}$ в атмосфере

Источник	Относительная интенсивность, \%
Сжитание угля	63
Производственные процессы	22
Сжигание нефти	14
Сжигание бензина	0,7

таблица 113
Состав автомобнльных выхлопных газов

Соединение	Количество загрязнений, вьделяемьх при различных условиях		
	Холостой ход двигателя	Низкая скорость	Высокая скорость
NO_{x}	$0 \sim 50 \mathrm{~m}^{\text {¢ }}{ }^{-1 *}$	$1000 \mathrm{mJH}^{-1}$	$4000 \mathbf{M л H}^{-1}$
CO	3-10 об. \%	3-8 об. \%	1-5 об. \%
$\begin{gathered} \mathrm{C}_{x} \mathrm{H}_{y} \\ \text { (углеводороды) } \end{gathered}$	300-800 MrH^{-1}	200-500 МлН ${ }^{-1}$	100-300 млн $^{-1}$
CO_{2}	6,5-8,0 об. \%	7-11 об. \%	12-13 об. \%

[^14]
Компоневты газовых выбросов основных производств химической промышленности

Производствоо	Соединения, выбрасыєаемьье в атмосферу
Кислот: азотной серной: нитрознвй способ контактный способ соляной щавелевой сульфаминовой фосфорной и фосфора	$\begin{gathered} \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{NH}_{3} \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \text { (пыль), } \mathrm{NO}_{2} \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3} \text { (пыль) } \\ \mathrm{HCl}, \mathrm{Cl}_{2} \\ \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \text { (пыль) } \\ \mathrm{NH}_{3}, \mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{NH}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}\right. \\ \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HF}, \mathrm{Ca}_{5} \mathrm{~F}_{2}\left(\mathrm{PO}_{3}\right)_{2} \text { (пыль) } \end{gathered}$
Удобрений: Суперфосфата Жидкого хлора Хлорной извести Полихлорвиниловой смолы Электролиз	$\mathrm{NO}, \mathrm{NO}_{3}, \mathrm{NH}_{3}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{P}_{2} \mathrm{O}_{5}$, HNO_{3}, шыль удобрений $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HF}$, пыль суперфосфата $\mathrm{HCl}, \mathrm{Cl}_{2}, \mathrm{Hg}$ $\mathrm{Cl}_{2}, \mathrm{CaCl}_{2}$ (пыль) $\mathrm{Hg}, \mathrm{HgCl}_{2}, \mathrm{NH}_{3}$ $\mathrm{NaCl}, \mathrm{Cl}_{2}, \mathrm{NaOH}$
Ацетона	$\mathrm{CH}_{3} \mathrm{CHO},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
Аммиака	$\mathrm{NH}_{3}, \mathrm{CO}$
Метанола	$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}$
Капролактама	$\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}$
Катализаторов	$\mathrm{NO}, \mathrm{NO}_{2}$, пыль катализаторов
Искусственньхх волокон	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{CS}_{2}$
Пресс-порошков	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$, пыль порошков и смолы
Фенолформальдегидньх смол	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{O}$
Абразивных материалов и инструментов и машиностроительной керамики	Абразивная пыль $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiC}, \mathrm{SiO}_{2}$, $\mathrm{BN}, \mathrm{ZrO}_{2}, \mathrm{Si}_{3} \mathrm{~N}_{4}, \mathrm{~B}_{4} \mathrm{C}$; газы CO, CO_{2}, SO_{2}; фенол, формальдегид, фурфурол, ксилол

Антропогенные суммарные выбросы SO_{2} в мире составляют около $150 \cdot 10^{6}$ тонн/год, и основная его масса (до 70%) выбрасывается с дымовыми газами топливноэнергетических установок, работающих на угле и мазуте с большим содержанием серы, а также предприятиями цветной и черной металлургии (до 15%) при переработке сульфидных руд:

$$
\begin{gathered}
\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}+\mathrm{SO}_{2} \uparrow, \\
4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2} \uparrow .
\end{gathered}
$$

Выбрасываемый в атмосферу сернистый газ является причиной возникновения кислотных дождей, поскольку SO_{2} взаимодействует с атмосферной влагой и создает кислотную среду:

$$
\begin{gathered}
\mathrm{SO}_{2}+\underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \mathrm{HO}_{3} \rightleftarrows \mathrm{~S}^{\bar{e}} \rightleftarrows} \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \underset{4}{\rightleftarrows}+4 \mathrm{SH}^{+}+\mathrm{SO}_{3}^{2-}
\end{gathered}
$$

Аналогичным образом газы NO_{x}, выбрасываемые промышленными предприятиями и автотранспортом, заражают атмосферу и вызывают выпадение кислотных дождей, содержащих азотную кислоту.

В промышленных районах $\mathbf{6 0} \%$ кислотных дождей дает серная кислота, 30% - азотная, 5% - соляная и 2% - углекислый газ.

В районах, удаленных от промышленных объектов, доля CO_{2} в создании кислой среды атмосферных осадков составляет $\mathbf{8 0 \%}$ за счет обратимого взаимодействия его с водой:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightleftarrows 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} .
$$

На территории СНГ отмечается уменьшение кислотности (рост pH) выпадающих осадков с запада на восток. Согласно данным станций контроля кислотности осадков, приведенным на рис. 43, прослеживаются две основные тенденции пространственного распределения кислотности выпадающих осадков в СНГ: 1) отмечается рост pH вна-

Pис. 43
Распределение pH в снежном покрове на территории СССР по данным 1988 г.

правлении с запада на восток с некоторым отклонением, связанным с влиянием промышленных центров и рельефа местности; 2) к северу и югу кислотность осадков в целом уменьшается. Наиболее кислые осадки выпадают в холодный период года и особенно в феврале-марте.

Таким образом, в воздух, которым мы дышим, попадает много вредных веществ, среди которых немалую опасность представляют оксиды азота (NO_{x}), катализирующие (ускоряющие) процесс разложения озонового слоя в стратосфере, и сернистый газ (SO_{2}), выбрасываемые в окружающую среду в составе дымовых газов.

Очистить дымовые газы от оксидов азота и сернистого газа помогает химия. Так, для очистки газов от NO_{x} применяют:

1) связывание NO_{x} гидроксидом кальция:

$$
2 \mathrm{Ca}(\mathrm{OH})_{2}+4 \mathrm{NO}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{Ca}(\mathrm{OH})_{2}+4 \mathrm{NO}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

2) каталитическое селективное восстановление NO_{x} аммиаком:

$$
\mathrm{NO}_{2}+\mathrm{NO}+2 \mathrm{NH}_{3} \xrightarrow{\text { kar. }} 2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} ;
$$

3) окисление до азотной кислоты с получением в конечном итоге $\mathrm{NH}_{4} \mathrm{NO}_{3}$, используемого как удобрение:

$$
\begin{gathered}
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}, \\
4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}, \\
\mathrm{HNO}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} .
\end{gathered}
$$

Очистка дымовых газов от SO_{2} может осуществляться тремя способами:

1) аммиачным методом, основанным на протекании реакций

$$
\mathrm{SO}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{NH}_{4} \mathrm{HSO}_{3},
$$

$$
2 \mathrm{NH}_{4} \mathrm{HSO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}
$$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}+2 \mathrm{NH}_{4} \mathrm{HSO}_{3}=2\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O} ;$

2) методом нейтрализации, основу которого составляют реакции

$$
\begin{gathered}
2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{3}, \\
2 \mathrm{NaHCO}_{3}, \mathrm{SO}_{2}=\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}, \\
2 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{NaHSO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3},
\end{gathered}
$$

иЛи

$$
\begin{aligned}
& \mathrm{CaO}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{CaSO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \downarrow \\
& \mathrm{CaSO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}=\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

либо

$$
\begin{gathered}
\mathrm{MgO}+\mathrm{SO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}=\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{ZnO}+\mathrm{SO}_{2}+2,5 \mathrm{H}_{2} \mathrm{O}=\mathrm{ZnSO}_{3} \cdot 2,5 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

3) каталитическим методом, основанным на окислении SO_{2} в присутствии катализатора и получении $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Может использоваться и такой способ:

$$
\mathrm{SO}_{2}+\mathrm{CaCO}_{3}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{CO}_{2} \uparrow
$$

23.2. ВОДА КАК ОДИН ПЗ ПРИРОДНЫХХ РЕСУРСОВ. ПСТОЧНИЕИ ЗАГРЯЗНЕННЯ ВОДЫ

Приведем некоторые сведения о запасах и потреблении пресных водсогласно данным работы И.А. Шикломанова*:

Мировые запасы пресной воды	$34980 \cdot 10^{3} \mathrm{Km}^{3}$
Ежегодно возобновляемые запасы (годовой сток рек)	46800 км $^{3} /$ год
Полное мировое потребление воды	$4130 \mathrm{~km}^{3} /$ год
Безвозвратное мировое потребление воды	$2360 \mathrm{~km}^{3} /$ год
Запасы пресной воды на территории России	$>2.10^{6} \mathrm{~km}^{3}$
Ежегодно возобновляемые водные ресурсы в России	$4270 \mathrm{~km}^{3} /$ год
Средняя обеспеченность водой речного стока на одного жителя России	- $31000 \mathrm{~m}^{3} /$ год

По данным Института мировых ресурсов, для человеческой деятельности доступно около 9000 км ${ }^{3}$ пресной воды. Этого объема достаточно для обеспечения водой 20 млрд человек в год. Однако потребление воды с каждым годом растет (рис. 44). Среднее суточное потребление воды в городе составляет от 30 до 400 л на одного человека (Нью-Йорк - 600 л/сутки, Москва - 560 , Лондон - 260 , Минск - 320). Из всего объема потребляемой городской воды 50% идет на хозяйственные нужды и для питания; 30% - на производственные нужды и 20% - на коммунально-бытовые.

При прохождении через весь гидрологический цикл, слагаемый из трех основных потоков - осадков, испарения и влагопереноса (рис. 45), вода загрязняется как природными компонентами, так и отходами человеческой деятельности, поскольку основная часть используемой в промышленности воды возвращается в естественные водоемы в виде стоков, загрязненных примесями различных соединений, в том числе и токсичных. Особую опасность представляют сточные воды химических и нефтехимических предприятий. Доля промышленности в загрязнении поверхностных природных вод составляет 70-80\%.

[^15]

Рис. 44
Рост потребления объема воды (V, км²), используемой человечеством начиная с 1950 г.

Рнс. 45
Гидрологический цикл, включающий три основных потока: осадки, испарение и влагоперенос

Цифры на рисунке - объемы воды в км ${ }^{3} /$ год.
В табл. 115 и 116 приведены основные типы и допустимые пределы загрязнений воды различными вредными для живой природы веществами. При превышении допустимых концентраций загрязнений сточные воды должны подвергаться очистке.

Тппы загрязвений воды (по данным службы здравоохранення СIIIА)

Вещества, для окисления которых необходим кислород	
Возбудитель инфекции	Бактерии и вирусы (сточные воды, отходы животного происхождения)
Питательные вещества для растений	Нитраты и фосфаты (удобрения, промыплленные отходы)
Органические соединения	Детергенты, инсектициды, гербициды, сточные воды
Другие типы загрязнений	
Минералы и химикаты	Кислоты, основания и соли (шахтные воды, неорганические промышленные отходы)
Осадки Радиоактивные вещества	Ил (продукты эрозии почвы) Радиоактивные изотопы, получаемые в процессе добычи или изготовления радиоактивных веществ
Тепловое загрязнение	Теплосброс (оставшаяся вода из паровыхх турбин электростанций)

В обычных условиях жизнь растений и животных в воде (морских водорослей и бактерий, рыб и других обитателей водных бассейнов) возможна только при достаточном количестве растворенного в ней кислорода. Совершенно лсно, что многочисленные сбросы необработанных промышленных и канализационных отходов в естественные водные источники (ручьи или реки) приводят к снижению количества растворенного в них кислорода до уровня, исключающего поддержание жизни в воде. Отсюда возникает необходимость очистки сточных вод, загрязненных бытовыми (хозяйственными и фекальными) и производственными (промышленными) отходами. К сточным водам также относят и атмосферные воды, удаляемые, как и загрязненные воды, с территории населенных мест различными системами канализации.

Допустимые пределы загрязнения воды
различными веществами, рекомендуемые службой здравоохранения СІІІА (1962 год)

Загрязннющий агент	Концентращия, $\boldsymbol{м л \boldsymbol { H } ^ { - 1 }}$	Эффбект, вьъзвааемый загрязнением
$\begin{gathered} \text { As } \\ \text { (в любых } \\ \text { видах) } \end{gathered}$	0,01	Накапливаясь в организме, оказывает общее токсичное действие
$\begin{gathered} \text { Сu } \\ \text { (в любыгх } \\ \text { видах) } \end{gathered}$	1,0	В высоких концентрациях нарушает функцию печени.* Исполъуется для ограничения роста водорослей
$\begin{gathered} \mathrm{Pb} \\ \text { (в любых } \\ \text { видах) } \end{gathered}$	0,05	Накапливаясь в организме, оказывает общее токсичное действие; подавляет функцию костного мозга
$\begin{gathered} \mathrm{Zn} \\ \text { (в любых } \\ \text { видах) } \end{gathered}$	5,0	Является необходимым для организма элементом**
CN^{-}	0,01	Вызывает отравление со смертельным исходом при концентрации 1 млн $^{-1}$
	45,0	Вызывает заболевание крови (меттемоглобинемию) у детей
F^{-}	$<1,0$	При концентрацни выше 1,2 млн $^{-1}$ разрушает зубную эмаль***

[^16]
23.3. очиСТЕА СТочныХ вод

Очень ценное свойство природных вод - их способность к самоочищению, являющался результатом взаимосвлзанных физико-химических и биохимических процессов (реакции гидролиза, адсорбции, нейтрализации, ионного обмена и др.). Например, ионы меди Cu^{2+} в присутствии растворимого CO_{2} образуют осадок основной соли: $2 \mathrm{Cu}^{2+}+$ $+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow(\mathrm{CuOH})_{2} \mathrm{CO}_{3}+4 \mathrm{H}^{+}$; ионы CN - окисляются кислородом воздуха с образованием цианатов: $2 \mathrm{CN}^{-}+\mathrm{O}_{2}=$ $=2 \mathrm{CNO}^{-}$.

При участии анаэробных бактерий остатки животных и растительных организмов окисляются с образованием $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}{ }^{3-}$. Но наряду с этими процессами при избытке загрязнений (особенно органическими веществами) в качестве продуктов разложения образуются такие вредные вещества, как $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{CH}_{4}$, которые могут привести к массовой гибели обитателей водоемов. Особенно это опасно для грунтовых вод.

При небольшом загрязнении рек и озер восстановление качества их вод возможно за счет естественных процессов самоочищения, что является невозможным для грунтовых вод, лишенных непосредственного контакта с атмосферным кислородом, который необходим для Функционирования микроорганизмов.

Ликвидация загрязнений водного бассейна промышленными стоками может быть осуществлена путем создания замкнутых водооборотных циклов, в которых происходит периодическая очистка воды.

Очистка сточных вод включает три последовательные стадии. Первичная стадия - отфильтровывание твердых примесей, песка и ила и хлорирование воды для обезвреживания находящихся в ней инфекционных бактерий. При хлорировании (добавлении хлора в воду) между водой и хлором протекает реакция диспропорционирования: $\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \rightarrow \mathrm{HClO}+\mathrm{Cl}^{-}+\mathrm{H}^{+}$. Слабая кислота HClO медленно разлагается, выделяя кислород: $2 \mathrm{HClO} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+\mathrm{O}_{2}$.

Окислительная способность HClO очень высокая (выше, чем у MnO_{4}^{-}), и этим объясняется ее воздействие на бактерии и вирусы, лишающее их опасных свойств. В канализационные воды в зависимости от степени их загрязненности добавляют от 2 до $5 \mathrm{mr} /$ л Cl_{2}. Хлор также добавляют и в воду плавательных бассейнов. Впоследнее время хлорирование воды заменяется применением озона (O_{3}) и пероксида водорода ($\mathrm{H}_{2} \mathrm{O}_{2}$), поскольку основными продуктами протекающих в этом случае химических реакций являются такие безвредные вещества, как $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{O}_{2}$, в то время как при хлорировании могут образовываться хлоруглеводороды, вредные для здоровья человека.

Вторичная очистка - медленная фильтрация либо аэрация, при этом сточные воды просачиваются через слой гравия, в котором находятся бактерии, разлагающие 75% содержащихся в воде органических веществ. Обезвреженные таким образом сточные воды обогащают воздухом и дают им отстояться для удаления осаждающихся примесей. Этот метод обладает $\mathbf{9 0} \%$-ной эффективностью.

Третичная очистка воды связана с удалением из нее остатков органических веществ и ионов и зависит от конкретного характера сточных вод. В некоторых случаях для третичной очистки используют фильтры из активированного древесного угля, а для осаждения ионов PO_{4}^{3-} - гидроксид кальция $\mathrm{Ca}(\mathrm{OH})_{2}$. Возможно также применение электродиализа.

В настоящее время кроме биологического разработаны химические, сорбционные, электрохимические, радиационно-химические методы очистки сточных вод. Однако водоочистительные технологии все время усовершенствуются и, соответственно, дорожают. Поэтому наиболее перспективными являются проекты, предотвращающие попадание загрязнений в водоемы. К числу таких проектов относится создание безотходных технологий. Примером может служить разработанная в СанктПетербургском технологическом институте безотходная технология производства серной кислоты.

ПЕ्रРО

		группы				
		A \quad B	11	B III	B IV	-
1	1	(H)				
2	2		$\underbrace{2}_{1}$, צremon	\%
3	3					
4	4		$\mathbf{C a}^{20}$			
	5		$\begin{aligned} & 20,08 \\ & \hline \end{aligned}$			
5	${ }^{6}$					
	7			$\begin{array}{\|cc\|} \hline 88,959 \\ \hline \end{array}$		
	8					
	9					
	10					Ns ${ }^{105}{ }^{\text {2 }}$

* ланта

$\star+2 M T 1$

Д. М. МЕНДЕЛЕЕЕВА (моротвап форма)

элементов

$\begin{array}{\|c\|c\|} \hline \text { PI } & 65 \\ \hline & 8 \\ \text { TEPБий } & 278 \\ 158,9254 & \frac{8}{8} \\ \hline \end{array}$				$\begin{array}{r} 68 \\ 28 \\ 30 \\ 18 \\ 18 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|cr\|} \hline \text { V11 } & 69_{2} \\ \hline \text { тупий } & 31 \\ 168,9342 & 18 \\ \hline \end{array}$	$\begin{array}{\|r\|r\|} \hline \text { 71 } & 70_{2} \\ \hline \text { иттерьий } & 38 \\ 173,04 & 8 \\ \hline \end{array}$	$\begin{array}{\|cr\|} \hline & 71_{2} \\ \hline \text { LTL } & 32 \\ \text { лютеций } & 38 \\ 174,97 & 28 \\ \hline \end{array}$

НОИДы

$\begin{array}{\|c\|} \hline \text { Пери- } \\ \hline \end{array}$								¢рупII	
	1 A	II A	III B	IV B	V B	VI B	VII B		
1	H^{1}								
2	Li^{3}	$B e^{4}$							
3	$\mathrm{Na}{ }^{11}$	$\mathbf{M g}{ }^{12}$							
4	K ${ }^{19}$	$\mathrm{Ca}{ }^{20}$	Sc ${ }^{18}$	$\mathrm{Ni}{ }^{22}$	V^{23}	Cr^{24}	Mn^{25}	Fe^{26}	Co ${ }^{27}$
5	$\mathbf{R b}{ }^{37}$	Sr^{38}	Y^{39}	Zr^{40}	Nb^{41}	Mo ${ }^{42}$	Tc^{43}	Ru^{44}	Rd ${ }^{45}$
6	Cs ${ }^{55}$	Ba^{56}	La*	Hf^{72}	Ta ${ }^{73}$	W^{74}	$R e^{75}$	Os ${ }^{76}$	Ir ${ }^{77}$
7	Fr ${ }^{87}$	Ra^{88}	Ac**	Ku^{104}					
	s-элементы		- d-элемевты						

* Лантаноидь

Se^{68}	Pr^{59}	Nd^{60}	Pm^{61}	Sm^{62}	Eu^{63}	Gd^{64}

** Акттиноидь

Th^{90}	$\mathrm{~Pa}^{91}$	U^{92}	$\dot{\mathrm{~N}}^{93}$	Pu^{94}	Am^{95}	Gm^{96}

Особенности длиннопериодного варианта таблицы:

1. Вся совокупность элементов разделяется на s-, p-, d-и f-элемевты.
2. s-элементы образуют два вертикальных столбца - группы I А и IIA, р-элементы - шесть групп III A-VIIIA; d-элементы - десять вертикальных столбцов; f-элементы - четырнадцать.

Группи								
VIII B	1 B	II B	III A	IV A	V A	VI A	VII A	VIII A
							$\left(\mathrm{H}^{\mathbf{1}}\right.$)	He^{2}
			B ${ }^{5}$	C^{6}	N ${ }^{7}$	0^{8}	$F{ }^{9}$	$\mathrm{Ne}{ }^{10}$
			Al ${ }^{13}$	Si ${ }^{14}$	P^{15}	S^{16}	Cl ${ }^{17}$	Ar ${ }^{18}$
$\mathrm{Ni}{ }^{28}$	$\mathrm{Cu}{ }^{29}$	$\mathrm{Zn}{ }^{30}$	Ga ${ }^{31}$	Ge^{32}	As ${ }^{33}$	Se^{34}	Br ${ }^{35}$	Kr ${ }^{36}$
Pd ${ }^{46}$	Ag ${ }^{47}$	Cd ${ }^{48}$	In ${ }^{49}$	Sn ${ }^{50}$	Sb^{51}	$\mathrm{Te}{ }^{52}$	I 53	$\mathrm{Xe}{ }^{54}$
Pt^{78}	Au ${ }^{79}$	Hg^{80}	T1 ${ }^{81}$	Pb^{82}	Bi^{83}	Po ${ }^{84}$	At ${ }^{85}$	Rn^{86}
d-элементы \longrightarrow			р-элементы					

(f-элементыи)

	Tb^{65}	Dy^{66}	Ho^{67}	Er^{68}	Tm^{69}	Yb^{70}	Lu^{71}

(f-элементыи)

	Bk^{97}	Cf^{98}	Es^{99}	Fm^{100}	Md^{101}	No^{102}	Lr^{103}

3. Неметаллы образуют «треугольник» из s - и p-элементов. Элементы B, Si, As, Te и At, которые лежат на диагональной границе треугольника, называют полуметаллами из-за их двойственных (металлических и неметаллических свойств).

TABJLHA PACTEOPMMOCTE COJEh,

	H^{+}	NH_{4}^{+}	K^{+}	Na^{+}	Ag^{+}	Ba^{2+}	Ca^{2+}	Mg^{2+}
OH^{-}		P	P	P	-	P	M	H
NO_{3}^{-}	P	P	P	P	P	P	P	P
Cl^{-}	P	P	P	P	H	P	P	P
S^{2-}	P	P	P	P	H	-	-	-
SO_{3}^{2-}	P	P	P	P	M	M	M	M
SO_{4}^{2-}	P	P	P	P	M	H	M	P
CO_{3}^{2-}	P	P	P	P	H	H	H	H
SiO_{3}^{2-}	H	-	P	P	H	H	H	H
PO_{4}^{2-}	P	P	P	P	H	H	H	H
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	P	P	P	P	P	P	P	P

P - растворимое вещество;
М - малорастворимое вещество;

Zn^{2+}	Sn^{2+}	Cu^{2+}	Hg^{2+}	Pb^{2+}	Fe^{2+}	Fe^{3+}	Al^{3+}	Cr^{3+}
H	H	H	-	H	H	H	H	H
P	P	P	P	P	P	P	P	P
P	P	P	P	M	P	P	P	P
H	H	H	H	H	H	H	-	-
M	H	-	-	H	M	-	-	-
P	P	P	P	H	P	P	P	P
-	-	-	-	H	H	-	-	-
H	H	-	-	H	H	-	-	-
H	H	H	H	H	H	H	H	H
P	P	P	P	P	P	P	P	P

Н - нерастворимое в воде вещество;
$(-)$ - вещество разлагается в воде или не существует.

Латинский и греческий алфавиты

Латинский алфавит

nponucные	cmpo4 ные	название
A	a	a
B	b	бэ
C	c	дэ
D	d	дэ
E	e	Э
F	f	эф
G	g	гэ (же)
H	h	xa (am)
I	-	и
J	j	йот (жи)
K	k	ка
L	1	аль
M	m	эм
N	n	эн
0	0	0
P	p	пэ
Q	q	ку
R	r	эр
S	S	э¢
T	t	T ${ }^{\text {P }}$
U	u	y
V	v	E9
W	w	дубль вэ
X	x	икс
Y	y	игрек
Z	z	397

Греческий алфавит

$\begin{gathered} \text { пропис- } \\ \text { нысе } \end{gathered}$	строч- нысе	название
A	$\boldsymbol{\alpha}$	а льфа
B	β	бета
Γ	γ	га Mma
Δ	δ	де льта
E	ε	эпСило н
Z	ζ	дзе та
H	η	эта
Θ	θ	те та
I	l	ио та
K	κ	ка ппа
Λ	λ	ла мбда
M	$\boldsymbol{\mu}$	ми (мю)
N	v	Ни (Ню)
Ξ	ξ	кси
0	0	О микрон
Π	π	пи
P	ρ	ро
Σ	σ	си'гма
T	τ	та'у
Y	v	и псилон
Ф	ϕ	Фи
X	χ	$\mathbf{X и}$
Ψ	$\boldsymbol{\psi}$	пси
Ω	ω	омега

PEROMEHДYEMAA IITTEPATYPA

1. Ахметов Н.С. Общая и неорганическая химия. М.: Высшая школа, 1998. 743 с.
2. Глинка Н. Л. Общая химия. Л.: Химия, 1983. 702 с.
3. Кузьменок Н. М., Стрельцов Е. А., Кумачев А. И. Экология на уроках химии. Минск: Красико принт, 1996. 208 с.
4. Стахеев А. Ю. Химия в 50 таблицах. М.: Московский институт рязвития образовательных систем. 1998.59 с.
5. Суворов А. В., Никольский А. Б. Общая химия: Учебник для вузов. СПб.: Химия. 1997.624 с.
6. Хомченко Г. П. Химия для поступающих в вузы. М.: Высшая школа, 1999. 463 с.
7. Шиманович И. Е., Пंавлович М. Л., Тикавый В. Ф., Малашко П.М. Общая химия в формулах, определениях, схемах. Минск: Універсітэдкае, 1996. 528 с.

СОДЕРЖАННЕ

OT ABTOPA 3

1. ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ 5
1.1. Предмет химии 5
1.2. Вещество и его свойства 5
1.3. Химический элемент 6
1.4. Химическая формула вещества 8
1.5. Простые и сложные вещества 9
1.6. Аллотропия 9
1.7. Степень окисления элемента 10
1.8. Определение степени окисления атома в молекуле по формуле вещества 11
1.9. Атомно-молекулярное учение 11
1.10. Относительная атомная масса 12
1.11. Относительная молекулярная масса 13
1.12. Массовая доля элемента 14
1.13. Вывод химической формулы вещества по известной массовой доле элементов 15
1.14. Количество вещества. Моль 16
1.15. Число Авогадро 17
1.16. Молярная масса 18
1.17. Молярный объем газа. Закон Авогадро 19
1.18. Относительная плотность газов 20
1.19. Химическое уравнение реакции 21
1.20. Закон сохранения массы веществ 22
1.21. Классификация химических реакций 23
1.22. Решение задач по химическим уравнениям 25
2. ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 27
2.1. Общая классификация неорганических веществ 27
2.2. Оксиды. Определение и классификация 28
2.3. Химические свойства оксидов 29
2.4. Получение оксидов 30
2.5. Основания. Определение и классификация 31
2.6. Химические свойства оснований 32
2.7. Получение оснований 33
2.8. Кислоты. Определение и классификация 34
2.9. Химические свойства кислот 35
2.10. Получение кислот 38
2.11. Соли. Определение и классификация 39
2.12. Химические свойства средних солей 40
2.13. Способы получения средних солей 41
2.14. Способы получения кислых солей 42
2.15. Способы получения основных солей 43
2.16. Взаимосвязь средних, кислых и основных солей 44
2.17. Генетическая связь между различными классами соединений 45
3. ПЕРИОДИЧЕСКИЙ ЗАКОН Д. И. МЕНДЕЛЕЕВА 46
3.1. Некоторые исторические даты, имеющие отношение к открытию и развитию периодического закона 47
3.2. Страницы жизни и научной деятельности Д. И. Менделеева (1834-1907) 48
3.3. Структура периодической системы химических элементов Д. И. Менделеева 50
4. СТРОЕНИЕ АТОМА И ПЕРИОДИЧЕСКАЯ СИСТЕМА Д. И. МЕНДЕЛЕЕВА 51
4.1. Атомное ядро. Изотопы 51
4.2. Состояние электрона в атоме. Квантовые числа 52
4.3. Электронная оболочка атома 55
4.4. Электронная формула атома. Распределение электронов в атоме 56
4.5. Электронная конфигурация атома и периодическая система Д. И. Менделеева 66
4.6. Валентность.
Основное и возбужденное состояние атома 67
4.7. Энергетические характеристики атома 70
4.8. Электроотрицательность 72
4.9. Характеристика элемента по его положению в периодической системе 75
5. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА 78
5.1. Ковалентная неполярная связь 79
5.2. Ковалентная полярная связь 81
5.3. Образование ковалентной связи по донорно-акцепторному механизму 82
5.4. Ионная связь 83
5.5. Водородная связь 84
5.6. Металлическая связь 85
5.7. Возбуждение атома и гнбридизация орбиталей 86
5.8. Повятия валентности и степени окисления в свете теории строения вещества 89
5.9. Агрегатное состояние вещества. Кристаллы. Тишы кристаллических решеток 91
6. ХИМИЧЕСКИР РЕАКЦИИ
И ЗАКОНОМЕРНОСТИ ИХ ПРОТЕКАНИЯ 95
6.1. Энтальпия. Стандартная энтальпия образования вещества 95
6.2. Выцисление тепловых эффектов 97
6.3. Энтропия 99
6.4. Энергия Гиббса 100
6.5. Скорость химических реакций 102
6.6. Необратимые и обратимые реакции. Химическое равновесие 108
7. PACTBOPH 113
7.1. Основные положения химической теории растворов Д. И. Менделеева 115
7.2. Растворимость веществ в воде 117
7.3. Способы выражения концентрации растворов 118
8. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ 122
8.1. Электролиты и неэлектролиты 122
8.2. Теория электролитической диссоциации 123
8.3. Степень электролитической диссоциадии 125
8.4. Сильные и слабые электролиты 127
8.5. Мекавизмы диссоциации электролитов 128
8.6. Электролитическая диссоциация кислот 129
8.7. Электролитическая диссоциадия оснований 130
8.8. Константа диссоциации 131
8.9. Электролитическая диссоциадия солей 133
8.10. Ионные уравнения реакций 134
8.11. Условия протекания реакций ионного обмена до конца 135
8.12. Диссоциация воды. Водородный показатель 138
8.13. Гидролиз солей 139
9. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ 142
9.1. Характеристика и типы окислительно-восстановительных реакций. 142
9.2. Составление уравнений окислительно- восстановительных реакций (метод электронного баланса) 144
9.3. Важнейшие восстановители и окислители 145
9.4. Окислительные свойства азотной кислоты 146
9.5. Окислительные свойства серной кислоты 147
9.6. Влияние среды на характер протекания окислительно-восстановительных реакций 148
9.7. Электролиз 149
9.8. Гальванический элемент 154
9.9. Электродные потенциалы и электрохимические продессы в растворах 157
10. ОВЩИЕ СВОЙСТВА МЕТАЛЛОВ 161
10.1. Физические и химические свойства металлов 161
10.2. Коррозия металлов и методы защиты 165
10.3. Получение металлов из руд 170
10.4. Сплавы 172
11. METAЛЛЫ ГРУППЫ IA (S-ЭЛЕМЕНТЫ) 174
11.1. Общая характеристика элементов 174
11.2. Калий, натрий - простые вещества 176
11.3. Соединения калия и натрия 178
11.4. Биологическая роль \mathbf{K}^{+}и $\mathbf{N a}^{+}$ 180
12. ЭЛЕМЕНТЫ ГРУППЫ ПА (S-ЭЛЕМЕНТЫ) 182
12.1. Общая характеристика элементов 182
12.2. Кальций - простое вещество 184
12.3. Соединения кальция 185
12.4. Жесткость воды 187
12.5. Биологическая роль кальция 187
13. ЭЛЕМЕНТЫ ГРУІІІЫ IIIA (р-элементы) 188
13.1. Общая характеристика элемептов 188
13.2. Алюминий - простое вещество. 190
13.3. Соединения алюминия 191
13.4. Биологическая роль алюминия 192
14. ЭЛЕМЕНТЫ ГРУППЫ VI В (d-элементы) 193
14.1. Общая характеристика элементов 193
14.2. Хром - простое вещество 195
14.3. Соединения хрома 196
14.4. Виологическая роль хрома 199
15. ЭЛЕМЕНТЫ ГРУППЫ VIII В (d-элементы) 200
15.1. Общая характеристика элементов 200
15.2. ЗЖелезо - простое вещество 201
15.3. Соединения железа 203
15.4. Виологическая роль железа 204
16. ОБЩИЕ СВОЙСТВА НЕМЕТАЛЛОВ 205
17. ВОДОРОД 207
17.1. Водород как простое вещество 207
17.2. Соединения водорода 208
17.3. Биологическая роль водорода и воды 209
18. ЭЛЕМЕНТЫ ГРУППЫ VIIIA (s- и р-элементы) 210
19. ЭЛЕМЕНТЫ ГРУППЫ VII А (s- и р-элементы) 212
19.1. Общая характеристика галогенов 212
19.2. Галогены как простые вещества 214
19.3. Хлор - простое вещество 215
19.4. Хлороводород, соляная кислота и ее соли 216
19.5. Кислородные соединения хлора 218
19.6. Краткая характеристика фтора, брома и иода 219
19.7. Биологическая роль галогенов 220
20. ЭЛЕМЕНТЫ ГРУППЫ VI A (р-элементы) 222
20.1. Общая характеристика элементов 222
20.2. Халькогены - простые вещества 224
20.3. Сероводород и сульфиды 227
20.4. Кислородные соединения серы 228
20.5. Виологическая роль халькогенов 233
21. ЭЛЕМЕНТЫ ГРУППЫ VА (р-элементы) 234
21.1. Общая харақтеристика элементов 234
21.2. Азот как простое вещество 236
21.3. Аммиак и его соединения 237
21.4. Кислородные соединения азота 239
21.5. Фосфор - простое вещество 244
21.6. Соединения фосфора 245
21.7. Биологическая роль азота и фосфора 248
22. ЭЛЕМЕНТЫ ГРУППЫ IVA (р-элементы) 249
22.1. Общая характеристика элементов 249
22.2. Углерод как простое вещество 251
22.3. Соединения углерода 252
22.4. Кремний как простое вещество 254
22.5. Соединения кремния 255
22.6. Виологическая роль углерода и кремния 258
23. ХИМИЯ И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ COBPEMEHHOCTK 250
23.1. Воздух, которым мы дышим. Виды загрязнений воздуха и пути их устранения 260
23.2. Вода как один из природных ресурсов. Источники загрязнения воды 266
23.3. Очистка сточных вод 270
Приложение 1. Периодическая система элементов Д. И. Менделеева (короткая форма) 272
Приложение 2. Периодическая система элементов Д. И. Менделеева (длинная форма) 274
Приложение 3. Таблица растворимости солей, освований и кислот в воде 276
Приложение 4. Латинский и греческий алфавиты 278
ИСПОЛЬЗОВАННАЯ И РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА 279

Анатолий Петрович Гаршин
 Общая и неорганическая химия в схемах, рисунках, таблицах, химических реакциях: Учебное пособие

Заведующий редакцией
A. Кривцов
Руководитель проекта
Ведущий редактор
A. Кривцов
Художественный редактор
Корректор
Ю. Сергиенко
Верстка
К. Радзевич
Н. Викторова
А. Шляго

[^0]: * По схеме соль $\xrightarrow{\mathbf{t}}$ могут идти и более сложные реакции, например: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\mathfrak{t}} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{FeSO}_{4} \xrightarrow{\mathrm{t}} 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}+\mathrm{O}_{2}$, $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\mathrm{t}} 2 \mathrm{CuO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \uparrow ; \mathrm{MgCO}_{3}+2 \mathrm{HCl} \xrightarrow{\mathrm{t}} \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$; $4 \mathrm{CrO}_{3} \xrightarrow{\mathrm{t}} 2 \mathrm{Cr}_{2} \mathrm{O}_{3}^{2}+3 \mathrm{O}_{2} \uparrow ; \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{S} \xrightarrow{\mathbf{t}} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} ; 2 \mathrm{KMnO}_{4} \xrightarrow{\mathbf{t}}$ $\xrightarrow{\mathrm{t}} \mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2} \uparrow$.

[^1]: * \mathbf{p} - растворимая соль, н - нерастворимое основание.
 ** в растворе образуется гидрокомплекс тетрагидроксоцинкат (II) натрия - $\mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$.

[^2]: * При недостатке щелочи; при избытке $-\mathrm{Sn}(\mathrm{OH})_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow$ $\rightarrow \mathrm{BaSnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
 **По способу 4 в технике обычно получают щелочи путем электролиза водных растворов солей соляной кислоты:
 $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { мектрамз }} 2 \mathrm{NaOH}+\mathrm{H}_{2}+\mathrm{Cl}_{2}$;
 Растворы щелочей образуются также при действии воды на пероксиды патрия и калия, а также при разложении водой алкоголятов металлов:
 $2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{NaOH}+\mathrm{O}_{2}$.

[^3]: * При взаимодействии HNO_{3} с металлами водород не выделяется (образуются газы $\mathrm{NO}_{2}, \mathrm{NO}, \mathrm{NH}_{3}$). Характер взаимодействия кислородсодержащих кислот с металлами и веметаллами ва примере разбавленных и концентрированных азотной и серной кислот рассматривается в разделах 9.4 и 9.5.
 ** По своей активности металлы располагаются в ряд, называемый рядом активности, или электрохимическим рядом напряжений металлов.

[^4]: * Вольшинство средних солей представляют собой кристаллические вещества с ионной структурой, имеют высокие температуры плавления и кипения, поэтому при нагревании не разлагаются. Однако соли аммония и малоактивных металлов слабых кислот и кислот, в которых элементы пролвляют высокие положительные степени окисления, часто разлагаются при нагревании: $\mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\mathrm{t}^{\bullet}} \mathrm{NH}_{8}+\mathrm{HCl}, 2 \mathrm{Ag}_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{t}^{+}} 4 \mathrm{Ag}+2 \mathrm{CO}_{2}+\mathrm{O}_{2}, 2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{t}^{+}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$.

[^5]: * В результате такой реакции может быть получена кислая соль, но это не является способом получения кислой соли.

[^6]: * ОЭО - относительная электроотридательность (см. раздел 4.8).

[^7]: * Валентный уровень.

[^8]: * Реакция идет при $t=500^{\circ} \mathrm{C}$ в присутствии катализатора ($\mathrm{Fe}_{2} \mathrm{O}_{3}$).
 ** Энтальпии образования простых веществ в их устойчивых агрегатных состояниях принимаются равными нулю.

[^9]: * Реакция (может идти) идет с водяным паром при нагревании до $500^{\circ} \mathrm{C}$ в присутствии катализатора ($\mathrm{Fe}_{2} \mathrm{O}_{3}$) главным образом.

[^10]: * Химический эквивалент элемента - это количество элемента или вещества, которое соединяется с 1 молем атомов водорода или замещает то же количество его атомов в химических реакциях:

 $$
 \ni=\frac{A}{n}=\frac{M}{n},
 $$

 где Э - эквивалент; $\boldsymbol{A}, \mathbf{M}$ - атомная и молекулярная массы; n валентность или основность.

[^11]: * Реакция прокаливания железа на воздухе.

[^12]: * $\mathrm{Ca}(\mathrm{OH})_{2}$ в промышленности называют гашеной известью. Гашеная известь широко применяется в строительстве для приготовления известкового раствора (смепиванием $\mathrm{Ca}(\mathrm{OH})_{2}$ с песком и водой), который затвердевает на воздухе:

 $$
 \begin{align*}
 & \mathrm{Ca}(\mathrm{OH})_{2}+\underset{\text { necok }}{\substack{\mathrm{SiO}_{2}} \mathrm{CaSiO}_{3}+\mathrm{H}_{2} \mathrm{O}} \tag{1}\\
 & \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}
 \end{align*}
 $$

 из воздуха
 Реакции (1) и (2) используются при кирпичной кладке и штукатурных работах.

[^13]: ** B промышленности CaC_{2} получают взаимодействием негашеной (жженой) извести (CaO) с антрацитом или коксом в электрических печах при температуре около $1900^{\circ} \mathrm{C}$ по реакции:

 $$
 \mathrm{CaO}+3 \mathrm{C} \rightarrow \mathrm{CaC}_{2}+\mathrm{CO}
 $$

 Применнется CaC_{2} для получения ацетилена. Гипс ($\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) и алебастр ($2 \mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$) широко применяются в строительстве.

[^14]:

[^15]: * Шикломанов И. А. Исследование водных ресурсов суши: итоги, проблемы, перспективы. Л.: Гидрометеоиздат, 1988.

[^16]: * Является необходимым для организма элементом (1 мт/суткв).
 ** Цинк в пределах указанной концентрапии веобходине органиэму, поскољьку ов входит в состав гормона инсулина, который регулирует уровень сахара в крови.
 *** Используется для профилактики кариеса зубов.

